Skip to main content

Thermodynamic Properties and Conditions of Formation of Minerals in Enstatite Meteorite

  • Conference paper
Chemistry and Physics of Terrestrial Planets

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 6))

Abstract

Knowledge of the chemical and mineralogical composition of terrestrial matter and its evolution from the earliest stages of Solar system history to the present is one of the foundations of the modern Earth Sciences. One effective method of studying the evolutionary process of terrestrial matter at the planetary stage of Solar system history is a comparative planetological analysis of data on the structure and composition of the outer shells of the terrestrial planets as obtained by spacecraft missions. However, the early history of the terrestrial planets has been considerably obliterated by the processes of matter differentiation, and only traces of these processes can be seen on the surface of the Earth, Moon, and Venus. Therefore, information on the earliest preplanetary stages of Solar system evolution can be obtained only by the study of its minor bodies: the comets, asteroids, and meteorites, the matter of which may not have experienced extensive planetary differentiation. We witness only the beginning of a serious cosmochemical investigation of comets and asteroids, and reliable data on their chemical and mineralogical compositions is likely to be obtained only in the not too distant future. Hence, reliable information on the composition of the minor bodies of the Solar system may be obtained now from studies of meteorites, numerous samples of which are available in terrestrial meteorite collections. Thus, detailed studies of meteorites of different types and estimation of their formation conditions form the basis for the reconstruction of the physicochemical conditions in the Solar system at the earliest stages of its evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abendroth, R. P., and Schlechten A. W. (1959) A thermodynamic study of the titanium-sulfur system in the region TiS1.9.3 to TiS0.80, Trans. Met. Soc. AIME 215, 145–151.

    Google Scholar 

  • Baedecker, P. A., and Wasson J. T. (1975) Elemental fractionations among enstatite chondrites, Geochim. Cosmochim. Acta 39 (5), 735–765.

    Article  Google Scholar 

  • Beyer, R. P. (1983) Heat capacities of titanium disulfide from 5.87 to 300.7 K, J. Chem. Eng. Data 28 (3), 347–348.

    Article  Google Scholar 

  • Biswas, S., Walsh, T., Bart, G., and Lipschutz, M. E. (1980) Thermal metamorphism of primitive meteorites—XI. The enstatite meteorites: origin and evolution of a parent body, Geochim. Cosmochim. Acta 44 (12), 2097–2140.

    Article  Google Scholar 

  • Blander, M. (1971) The constrained equilibrium theory: sulfide phases in meteorites, Geochim. Cosmochim. Acta 35 (1), 61–76.

    Article  Google Scholar 

  • Buseck, P. R., and Holdsworth, E. F. (1972) Mineralogy and petrology of the Yilmia enstatite chondrite, Meteoritics 7 (4), 429–447.

    Google Scholar 

  • Cameron, A. G. W. (1973) Abundance of the elements in the solar system, Space Sci. Rev. 15 (1), 121–146.

    Article  Google Scholar 

  • Cameron, A. G. W., and Fegley, M. B. (1982) Nucleation and condensation in the primitive solar nebula, Icarus 52 (1), 1–14.

    Article  Google Scholar 

  • Cameron, A. G. W., and Pine M. R. (1973) Numerical models of the primitive solar nebula, Icarus 18 (3), 377–406.

    Article  Google Scholar 

  • Codata (task group on key values for thermodynamics) (1978). Tentative Set of Key Values for Thermodynamics, Pt. VII, Spec. Rept. No. 7, 27 pp.

    Google Scholar 

  • Dodd, R. T. (1981) Meteorites: A Petrological-Chemical Synthesis, Cambridge Univ. Press, Cambridge, 368 pp.

    Google Scholar 

  • Dorofeeva, V. A., and Khodakovsky, I. L. (1981) Raschet ravnovesnogo sostava mhogokomponenthykh sistem ‘metodom minimizatsii’ po konstantam ravnovesiya,—Geokhimiya 1, 129–135.

    Google Scholar 

  • Dorofeeva, V. A., Petaev, M. I., and Khodakovsky, I. L. (1982) On the influence of nebular gas chemistry on the condensate compositions,-Abstracts, Lunar Planet. Sci. ConfXIII, Houston, Texas, U.S.A., Pt. 1, pp. 180–181.

    Google Scholar 

  • Edwards, J. G., Fransen, H. F., and Gilles, P. W. (1971) High-temperature masspectrometry vaporization and thermodynamics of titanium monosulfide, J. Phys. Chem. 54 (2), 545–554.

    Article  Google Scholar 

  • Ehlert, T. S., Dean, T. P., Billy M., and Labbe, J. C. (1980) Thermal decomposition of the oxynitride of silicon, J. Amer. Ceram. Soc. 63 (3/4), 235–236.

    Article  Google Scholar 

  • Fegley, M. B. (1981) The thermodynamic properties of silicon oxynitride, J. Amer. Ceram. Soc. 64 (9), C124–C126.

    Article  Google Scholar 

  • Fegley, M. B., and Lewis, J. S. (1980) Volatile element chemistry in the solar nebula: Na, K, F, CI, Br, P, Icarus 41 (3), 439–455.

    Article  Google Scholar 

  • Fransen, H. F. (1963) The high-temperature vaporization of some oxides and sulfides of titanium, Dissert. Abstr., 23, 2713.

    Google Scholar 

  • Fransen, H. F., and Gilles, P. W. (1965) A thermodynamic study of the vaporisation of titanium monosulfide, J. Chem. Phys. 42 (3), 1033–1040.

    Article  Google Scholar 

  • Grossman, L. (1972) Condensation in primitive solar nebula, Geochim. Cosmochim. Acta 36 (5), 597–619.

    Article  Google Scholar 

  • Grossman, L. (1973) Refractory trace elements in Ca-Al-rich inclusions in the Allende meteorite, Geochim. Cosmochim. Acta 37 (6), 1119–1140.

    Article  Google Scholar 

  • Grossman L., and Larimer, J. W. (1974) Early chemical history of the solar system, Rev. Geophys. Space Phys. 12 (1), 71–101.

    Article  Google Scholar 

  • Hager, P., and Elliott, F. (1967) The free energies of formation of CrS, Mo2S3 and WS2, Trans. Met. Soc. AIME 239 (4), 513–520.

    Google Scholar 

  • Herndon, J. M., and Suess, H. E. (1976) Can enstatite meteorites form from a nebula or solar composition? Geochim. Cosmochim Acta 40 (4), 395–399.

    Article  Google Scholar 

  • Hertogen, J., Janssens, M., Takahashi, H., Morgan, J. W., and Anders, E. (1983) Enstatite chondrites: trace element clues to their origin, Geochim. Cosmochim. Acta 47 (12), 2241–2255.

    Article  Google Scholar 

  • Igaki, K., Ohashi, N., and Mukami, M. (1971) Phase relation of nonstoichiometric chromium sulfide CrSx in the range of 1.200 to 1.400, J. Phys. Soc. Japan 31 (5), 1424–1430.

    Article  Google Scholar 

  • Ikramuddin, M., Binz, C. M., and Lipschutz, M. E. (1976) Thermal metamorphysm of primitive meteorites. II. Ten trace elements in Abee enstatite chondrite heated at 400–1000°C, Geochim. Cosmochim. Acta 40 (2), 133–142.

    Google Scholar 

  • Ivanov, A. V. (1984) Uglistyi khondrite Kaidun: intensivnoe peremeshivanie vechchestva pri firmirovanii meteoritnykh roditel’skikh tel, Tez. Dokl. 27-go Mezhd. Geol. Kongr., p. 297 Vol. 5, Nauka, Moskva.

    Google Scholar 

  • JANAF Thermochemical tables with Supplements ( 1971, 1974, 1975, 1978 ). National Bureau of Standards, U.S. Dept. of Commerce, Washington, D.C.

    Google Scholar 

  • Keil, K. (1968) Mineralogical and chemical relationships among enstatite chondrites, J. Geophys. Res. 73 (22), 6945–6976.

    Article  Google Scholar 

  • Keil, K., and Andersen, C. A. (1965a) Occurence of sinoite, Si2N2O in meteorites, Nature (London) 207 (4998), 745.

    Article  Google Scholar 

  • Keil, K., and Andersen, C. A. (1965b) Electron microprobe study of the Jajh deh Kot Lalu enstatite meteorite, Geochim. Cosmochim. Acta 29 (6), 621–632.

    Article  Google Scholar 

  • Keil, K., and Brett, R. (1974) Heideite, (Fe, Cr)I+x(Ti, Fe)2S4, a new mineral in the Bustee enstatite achondrite, Amer. Mineral 59 (5/6), 465–470.

    Google Scholar 

  • Keil, K., and Snetzinger, K. G. (1967) Niningerite: a new meteoritic sulfide, Science 155 (3761), 451–454.

    Article  Google Scholar 

  • Kelley, K. K. (1937) Contributions to the Data of Theoretical Metallurgy, Bull. No. 407, U.S. Bur. Mines.

    Google Scholar 

  • Khodakovsky, I. L. (1975) Nekotorye voprosy termodinamiki vodnykh rastvorov pri vysokikh temperaturakh i davleniyakh, in: Fisiko-khimicheskie problemy gidrotermal’nykh i magmaticheskikh protsessov, Moskva pp. 124–150, Nauka.

    Google Scholar 

  • Khodakovsky, I. L. (1982) On carbon to oxygen ratio in solar nebula, Abstr., Lunar Planet. Sei. Conf. XIII, Houston, Texas, U.S.A., Pt. 1, pp. 385–386.

    Google Scholar 

  • Khodakovsky, I. L., and Petaev, M. I. (1981) Termodinamicheskie svoict va i usloviya obrazovaniya osbornita, sinoita i karlsbergita v meteoritakh, Geokhimiya, No 3, 329–340.

    Google Scholar 

  • Kochchenko, V. I., and Grinberg, Ya. H. (1982a) Termodinamicheskie svoistva Si2N2O, Izv. ANSSSR, Ser. Neorg. Mater. 18 (6), 1047–1049.

    Google Scholar 

  • Kochchenko, V. I., and Grinberg, Ya. H. (1982, b) Termodinamicheskie svoistva Si3N4, Izv. ANSSSR, Ser. Neorg. Mater. 18(6), 1064–1066.

    Google Scholar 

  • Larimer, J. W. (1967) Chemical fractionations in meteorites—I. Condensation of elements, Geochim. Cosmochim. Acta 31, 1215–1238.

    Article  Google Scholar 

  • Larimer, J. W. (1968) An experimental investigation of oldhamite CaS; and the petrological significance of oldhamite in meteorites, Geochim. Cosmochim. Acta 32 (5), 965–982.

    Article  Google Scholar 

  • Larimer, J. W. (1975) The effect of C/O ratio on the condensation of planetary material, Geochim. Cosmochim. Acta 39 (2), 389–392.

    Article  Google Scholar 

  • Larimer, J. W., and Bartholomay, M. (1979) The role of carbon and oxygen in cosmic gases: some applications to the chemistry and mineralogy of enstatite chondrites, Geochim. Cosmochim. Acta 43 (9), 1455–1466.

    Article  Google Scholar 

  • Larimer, J. W., and Buseck, P. R. (1974) Equilibrium temperatures in enstatite chondrites, Geochim. Cosmochim. Acta 38 (3), 471–477.

    Article  Google Scholar 

  • Lattimer, J. M., and Grossman, L. (1978) Chemical condensation sequences in supernova ejecta, Moon Planets 19, 169–184.

    Article  Google Scholar 

  • Lavrukhina, A. K. (1982) O prirode izotopnykh anomalij v meteoritakh, Meteoritika No. 41, 78–92.

    Google Scholar 

  • Levin, B. Yu., and Simonenko, A. N. (1977) Voprosy proischozhdeniya meteoritov, Meteoritika No. 36, 3–23.

    Google Scholar 

  • Mason, B. (1966) Enstatite chondrites, Geochim. Cosmochim. Acta 30 (1), 23–39.

    Article  Google Scholar 

  • Mendybaev, R. A., et al. (1985) O kinetike reaktsij vosstanovleniya CO i N2 v khimicheskoj evolyutsii doplanetnogo oblaka, Geokhimiya 8, 1206–1217.

    Google Scholar 

  • Mills, R. S. (1974) Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides, Butterworths, London, 845 pp.

    Google Scholar 

  • Mineraly Spravochnik (1974) Diagrammy Fasovykh Sostoyanij, Moskva vyp. 1, Nauka, 514 pp.

    Google Scholar 

  • Moriyama, J., et al. (1977) Thermodynamic study of the sulphides of Cr and Ni by EMF measurements, abstr., Fifth Intern. Conf Chem. Thermodyram., August 1977, Ronneby, Sweden, p. 84

    Google Scholar 

  • Mraw, S. C., and Naas, D. F. (1979) The heat capacity of stoichiometric titanium disulfide from 100 to 700 K: absence of the previous reported anomaly at 420 K, J. Chem. Thermodynam. 11 (6), 585–592.

    Article  Google Scholar 

  • Muranaka, S. (1973) Order-disorder transition of vacancies in iron titanium sulfide (FeTi2S4), Mater. Res. Bull. 8 (6), 679–686.

    Article  Google Scholar 

  • Naumov, G. B., et al. (1974) Handbook of Thermodynamic Data, Rept. No USGS-WRD-74–001

    Google Scholar 

  • Naylor, B. F. (1944) High-temperature heat contents of ferrous and magnesium chromites, Ind. Ing. Chem 36 (10), 933–934.

    Article  Google Scholar 

  • Pankratz, L. B. (1982) Thermodynamic Properties of Elements and Oxides, Bull. No 672, U.S. Bur. Mines, 509 pp.

    Google Scholar 

  • Parnjipe, V. G., Cohen, M., Bever, M. B., and Froc, C. F. (1950) The iron-nitrogen system, J. Metals 188 (2), 261–267.

    Google Scholar 

  • Pelino, M., Viswanadham, P., and Edwards, J. G. (1979) Vaporization chemistry and thermodynamics of titanium monosulfide by the computer-automated simultaneous Knudsen-torsion effusion method, J. Phys. Chem. 83 (23), 2964–2969.

    Article  Google Scholar 

  • Petaev, M. I., and Khodakovsky, I. L. (1981) Ob usloviyakh obrasovaniya karbidov v ehnstatitovykh i zheleznykh meteoritakh, Tez. Vses. sov. po geokhimii ugleroda, Moskva, pp. 308–311, Geokhi and SSSR,

    Google Scholar 

  • Petaev, M. I., and Skripnik, A. Ya. (1983) O minerarnom sostave ehnstatitovykh meteoritov, Meteoritika No. 42, 86–92.

    Google Scholar 

  • Petaev, M. I., et al. (1982) Termodinamicheskie svojstva dobreelita i usloviya obrasovani¬ya ego v meteoritakh,-Geokhimiya No. 5, 690–703.

    Google Scholar 

  • Petaev, M. I., et al. (1983) Thermodynamic properties and origin of meteoritic minerals. III. Heideite, FeTi2S4, Abstr., Lunar Planet. Sci. Conf. XIV, Houston, Texas, U.S.A., Pt. 2, pp. 600–601.

    Google Scholar 

  • Petaev, M. I., et al. (1983) Thermodynamic properties and origin of meteoritic minerals. III. Heideite, FeTi2S4, Abstr., Lunar Planet. Sci. Conf. XIV, Houston, Texas, U.S.A., Pt. 2, pp. 600–601.

    Google Scholar 

  • Ramdohr P. (1973) The Opaque Minerals in Stony Meteorites, Academir Verlay, Berlin, 245 pp.

    Google Scholar 

  • Rezukhina, T. N., et al. (1965) Termodinamicheskie svojstva khromita zheleza iz ehlektrokhimicheskikh izmerenij, Ehlektrokhimiya 1 (9), 2014–2020.

    Google Scholar 

  • Robie, R. A., Hemingway B. S., and Fisher J. R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Temperatures, Bull, No. 1452, U.S. Geol. Soc., Washington, D.C., 456 pp.

    Google Scholar 

  • Robinson, J. R., and Haas, J. L. (1982) Thermodynamic and thermochemical data for 10 minerals in the magnesia-silica-water system obtained from improved evaluation procedures, Abstr., XII IUPAC Conf. Chem. Thermodyram, London, p. 15.

    Google Scholar 

  • Ryall, W. R., and Muan, A. (1969) Silicon oxynitride stability, Science 165, 1362–1364.

    Article  Google Scholar 

  • Safronov, V. S. (1982) Sovremennoe sostoyanie teorii proiskhozhdeniya Zemli, Izv. AN SSSR, Ser. Fizika Zemli No. 6, 5–25.

    Google Scholar 

  • Sakao, H., and Elliott, J. F. (1975) Thermodynamics of dilute b.c.c. iron silicon alloys, Metall. Trans. A, 6A (10), 1849–1851.

    Google Scholar 

  • Saxena, S. K., and Eriksson, G. (1983) High temperature phase equilibria in a solar-composition gas, Geochim. Cosmochim. Acta 47 (11), 1865–1874.

    Article  Google Scholar 

  • Sears, D. (1980) Formation of the E chondrites and aubrites— a thermodynamic model, Icarus 43 (1) 184–202.

    Google Scholar 

  • Shomate, C. H. (1944) High-temperature heat content of magnesium nitrate, calcium nitrate and barium nitrate, J. Amer. Chem. Soc. 66 (6), 928–929.

    Article  Google Scholar 

  • Termicheskie konstanty vechchestv (1974)-Moskva. Vol. 7, VINITI, Termodinamicheskie svoistva individuaVnykh vechchestv (1978–1983) Moskva. Vols. 1–4, Nauka.

    Google Scholar 

  • Todd, S. S., and Coughlin, J. T. (1952) Low temperature heat capacity, entropy at 298.16 K and high temperature heat content of titanium disulfide, J. Amer. Chem. Soc. 74 (2), 525–526.

    Article  Google Scholar 

  • Volovik, L. S., et al. (1979) Termodinamicheskie svojstva sul’fidov perekhodnykh metallov, Izv. AN SSSR, Ser. Neorg. Mater. 15 (4), 638–642.

    Google Scholar 

  • Wasson, J. T., and Wai, C. M. (1970) Composition of the metal, schreibersite and perryite of enstatite achondrites and the origin of enstatite chondrites and achondrites, Geochim. Cosmochim. Acta 34 (2), 169–184.

    Article  Google Scholar 

  • Whittingham, M. S. (1978) Chemistry of intercalation compounds metal guests in chalcogenide hosts, Prog. Solid State Chem. 12 (1), 41–99.

    Article  Google Scholar 

  • Wolf, R., Ebihara, M., Richter, G. R., and Anders, E. (1983) Aubrites and diogenites: trace element clues to their origin, Geochim. Cosmochim. Acta 47 (12), 2257–2270.

    Article  Google Scholar 

  • YavneP, A. A. (1984) Nekotorye voprosy klassifikatsii meteoritov, Dokl. 27-go Mezhd. Geol. Kongr., Moskva, vol. 11, pp. 79–86, Nauka.

    Google Scholar 

  • Yudin, I. A. (1972) Mineragraficheskoe issledovanie meteorita Pilistvere, Meteoritika No. 83–89.

    Google Scholar 

  • Yudin, I. A., and Smyshlyaev, S. I. (1964) Khimiko-mineragraficheskoe issledovanie neprosrachnykh mineralov meteoritov Norton County i Staroe Pes’yanoe, Meteoritika No. 25, 96–128.

    Google Scholar 

  • Young, D. J., Smeltzer, W. W., Kirkaldy, J. S. (1973) Nonstoichiometry and thermo-dynamics of chromium sulfides, J. Electrochem. Soc. 120 (9), 1221–1224.

    Article  Google Scholar 

  • Zabejvorota, N. S., et al. (1980) Svobodnaya ehnergiya reaktsii obrasovaniya FeCr2O4, Izv. ANSSSR, Ser. Neorg. Mater. 16(1), 181–183.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Petaev, M.I., Khodakovsky, I.L. (1986). Thermodynamic Properties and Conditions of Formation of Minerals in Enstatite Meteorite. In: Saxena, S.K. (eds) Chemistry and Physics of Terrestrial Planets. Advances in Physical Geochemistry, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4928-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4928-3_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9363-7

  • Online ISBN: 978-1-4612-4928-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics