Skip to main content

Generalized Mathematical Models for the Fractional Evolution of Vapor from Magmas in Terrestrial Planetary Crusts

  • Conference paper
Chemistry and Physics of Terrestrial Planets

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 6))

Abstract

The geological literature is replete with models for the differentiation of magmas that occur on Earth, the Moon, and other terrestrial bodies. The models involve processes such as crystal/liquid fractionation (Allégre and Minster, 1978), diffusion (Wright et al., 1983), magma chamber replenishment (O’Hara, 1977), magma mixing (McBirney,1980) and assimilation (Grove et al., 1982). However, few of these models include a quantitative treatment of the effects of magmatic vapor evolution on melt, crystal, or vapor chemistry, although qualitative appeals to such processes are commonplace. Vapor evolution has been cited as a possible explanation for aplite chemistry (Fourcade and Allegre, 1981), rubidium depletion in igneous amphibole (Chivas, 1981), magmatic oxidation effects (Chivas, 1981), fluorine depletion in suites of igneous rocks (McMillan, 1982) and as a source for ore metals in many ore deposits (c.f. Burnham, 1979). In his Evolution of the Igneous Rocks, N. L. Bowen (1928) states: “To many petrologists a volatile component is exactly like a Maxwell demon; it does just what one may wish it to do.” Apparently his demon is alive and well, and a quantitative model of vapor evolution is needed to test the above hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allégre, C. J., and Minster, J. F. (1978) Quantitative models of trace element behavior in magmatic processes, Earth. Planet. Sci. Lett. 38, 1–25.

    Article  Google Scholar 

  • Anderson, A. T. (1974) Chlorine, sulfur, and water in magmas and oceans, Geol. Soc. Amer. Bull. 85, 1485–1492.

    Article  Google Scholar 

  • Andriambololona, R., and Dupuy, C. (1978) Répartition et comportement des éléments de transition dans les roches volcaniques. I. cuivre et zinc, Bull. B.R.G.M. No. (2), Section II, 121–138.

    Google Scholar 

  • Bowen, N. L. (1928) The Evolution of the Igneous Rocks. Republished by Dover Publications, Toronto, 1956, 322 pp.

    Google Scholar 

  • Burnham, C. W. (1979) Magmas and hydro thermal fluids, in Geochemistry of Hydrothermal Ore Deposits, 2nd ed., edited by H. L. Barnes, pp 71–136. John Wiley and Sons, New York.

    Google Scholar 

  • Burnham, C. W., and Davis, N. F. (1974) The role of H2O in silicate melts: II thermodynamic and phase relations in the system NaAlSi3O8-H2O to 10 kilobars and 1100°C, Amer. J. Sci. 274, 902–940.

    Article  Google Scholar 

  • Campbell, A., Rye, D., and Petersen, U. (1984) A hydrogen and oxygen isotope study of the San Cristobal Mine, Peru: Implications of the role of water to rock ratio for the genesis of Wolframite deposits, Econ. Geol. 79, 1818–1832.

    Article  Google Scholar 

  • Candela, P. A. (1982) Copper and Molybdenum in Silicate Melt-Aqueous Fluid Systems. Ph.D. Thesis, Harvard University, Cambridge, Massachusetts, 138 pp.

    Google Scholar 

  • Candela, P. A. (1986) Toward a thermodynamic model for the Halogens in silicate melts: application to apatite-melt-vapor equilibria, in review, 1986.

    Google Scholar 

  • Candela, P. A., and Holland, H. D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochim. Cosmochim. Acta 48, 373–380.

    Article  Google Scholar 

  • Candela, P. A., and Holland, H. D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids, Geochim. Cosmochim. Acta 48, 373–380.

    Article  Google Scholar 

  • Carr, M. C. (1981) The Surface of Mars. Yale University Press, New Haven, 232 pp.

    Google Scholar 

  • Carron, J. P., and LaGache, M. (1980) Etude experimentale du fractionnement des elements Rb, Cs, Sr, et Ba entre feldspaths alcalins, solutions hydrothermals et liquides silicates dans le systeme Q.Ab.0r.H2O à 2Kbar entre 700 et 800°C, Bull. Mineral. 703, 571–578.

    Google Scholar 

  • Chivas, A. R. (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralization, part I, mafic silicates from the Koloula Igneous Complex, Contrib. Mineral. Petrol. 78, 389–403.

    Article  Google Scholar 

  • Dingwell, D. B., and Scarfe, C. N. (1983) Major element partitioning in the system haplogranite-HF-H2O: implications for leucogranites and high-silica rhyolites, EOS 64, 342.

    Google Scholar 

  • Eichelberger, J. C., Lysne, P. G., Miller, C. D., and Younker, L. W. (1985) 1984 drilling results at Inyo Domes, California, EOS 66, 384.

    Google Scholar 

  • Flynn, R. T., and Burnham, C. W. (1978) An experimental determination of rare earth partition coefficients between a chloride-containing vapor phase and silicate melts, Geochim. Cosmochim. Acta 42, 685–701.

    Article  Google Scholar 

  • Fourcade, S. and Allégre, C. J. (1981) Trace element behavior in granite genesis: a case study. The calc-alkaline plutonic association from the Querigut Complex (Pyrenées, France), Contrib. Mineral. Petrol. 76, 177–195.

    Article  Google Scholar 

  • Gammon, J. B., Borcsik, M., and Holland, H. D. (1969) Potassium-sodium ratio in aqueous solutions and co-existing silicate melts, Science, 163, 179–181.

    Article  Google Scholar 

  • Gill, J. (1981) Orogenic Andesites and Plate Tectonics. Springer-Verlag, Berlin, 390 pp.

    Google Scholar 

  • Grove, T. L., Gerlach, D. C., and Sando, T. W. (1982) Origin of calc-alkaline series lavas at Medicine Lake Volcano by fractionation, assimilation and mixing, Contrib. Mineral. Petrol. 80, 160–182.

    Article  Google Scholar 

  • Gunow, A. J. (1983) Trace Element Mineralogy in the Porphyry Molybdenum Environment. Ph.D. Thesis, University of Colorado, Boulder, Colorado, 267 pp.

    Google Scholar 

  • Hibbard, M. J. (1980) Indigenous source of late-stage dikes and veins in granitic plutons, Econ. Geol. 75, 410–423.

    Article  Google Scholar 

  • Higgins, M. D. (1985) Boron in the Inyo Domes rhyolites: mobile but not volatile, EOS, 66, 387.

    Google Scholar 

  • Holland, H. D. (1972) Granites, solutions and base metal deposits, Econ. Geol. 67, 281– 301.

    Article  Google Scholar 

  • Kilinc, I. A. (1969) Experimental Metamorphism and Anatexis of Shales and Graywackes. Ph.D. Thesis, The Pennsylvania State University, University Park, Pennsylvania, 178 pp.

    Google Scholar 

  • Kilinc, I. A., and Burnham, C. W. (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars, Econ. Geol. 67, 231–235.

    Article  Google Scholar 

  • Le Guern, F., and Bernard, A. (1982) A new method for sampling and analyzing volcanic sublimates—application to Merapi Volcano, Java, J. Volcanol. Geotherm. Res., 12, 133–146.

    Article  Google Scholar 

  • McBirney, A. R. (1980) Mixing and unmixing of magmas, J. Volcanol. Geotherm Res. 7, 357–371.

    Article  Google Scholar 

  • McMillan, W. J. (1982) The behavior of U, Th, and other trace elements during evolution of the Guichon Creek Batholith, British Columbia; in Uranium in Granites, edited by Y. T. Maurice, pp. 49–53. Paper 81–23, Geol. Surv. Canada, Ottawa.

    Google Scholar 

  • Neumann, H. (1948) On hydrothermal differentiation, Econ. Geol. 43, 77–83.

    Article  Google Scholar 

  • O’Hara, M. J. (1977) Geochemical evolution during fractional crystallization of a periodically refilled magma chamber, Nature (London) 266, 503–507.

    Article  Google Scholar 

  • Pichavant, M. (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapor pressure, Contrib. Mineral Petrol. 76, 430–439.

    Article  Google Scholar 

  • Stolper, E. (1982) The speciation of water in silicate melts, Geochim. Cosmochim. Acta 46, 2609–2620.

    Article  Google Scholar 

  • Taylor, B. E., Eichelberger, J. C., and Westrich, H. R. (1983) Hydrogen isotopic evidence of rhyolite magma degassing during shallow intrusion and eruption, Nature (London) 306, 541–545.

    Article  Google Scholar 

  • Taylor, P. S., and Stoiber, R. E. (1973) Soluble material on ash from active Central American volcanoes, Geol. Soc. Amer. Bull. 84, 1031–1042.

    Article  Google Scholar 

  • Thomas, E., Varekamp, J. C., and Buseck, P. R. (1982) Zinc enrichment in the phreatic ashes of Mt. St. Helens, April 1980, J. Volcanol. Geotherm. Res. 12, 339–350.

    Article  Google Scholar 

  • Tiller, W. A., Jackson, K. A., Rutter, J. W., and Chalmers, B. (1953) The redistribution of solute atoms during the solidification of metal, Acta Metallury, 1, 428–437.

    Article  Google Scholar 

  • Toulmin, P., Baird, A. K., Clark, B. C., Keil, K., Rose, H. J., Christian, R. P., Evans, P. H., and Kelliher, W. C. (1977) Geochemical and mineralogical interpretation of the Viking inorganic chemical results, J. Geophys. Res. 82, 4625–4634.

    Article  Google Scholar 

  • White, W. A., Bookstrom, A. A., Kamilli, R. J., Ganster, M. W., Smith, R. P., Ranta, D. E., and Steininger, R. C. (1981) Character and origin of Climax-type molybdenum deposits, Econ. Geol. 75th Anniv. Vol., 270–316.

    Google Scholar 

  • Wright, C. J., McCarthy, T. S., and Cawthorn, R. G. (1983) Numerical modelling of trace element fractionation during diffusion controlled crystallization, Comp. Geosci. 9, 367–389.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this paper

Cite this paper

Candela, P.A. (1986). Generalized Mathematical Models for the Fractional Evolution of Vapor from Magmas in Terrestrial Planetary Crusts. In: Saxena, S.K. (eds) Chemistry and Physics of Terrestrial Planets. Advances in Physical Geochemistry, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4928-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4928-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9363-7

  • Online ISBN: 978-1-4612-4928-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics