Skip to main content

Drug Discovery at the Enzyme Level

  • Chapter
Drug Discovery and Development

Abstract

This chapter deals with enzymes as targets of drug action. The focus is on inhibition of enzyme activity by drugs, although other actions of drugs on enzymes are possible, such as activation or allosteric modification of enzyme function. This chapter will not deal with enzymes themselves as drugs, e. g., L-asparaginase in the treatment of acute lymphocytic leukemia, papain used for proteolysis in wound debridement, and urokinase used in thrombolytic therapy. Metabolism of drugs by enzymes and inhibition or induction of drug-metabolizing enzymes are other drug-enzyme interactions that can be important considerations in drug development, but our focus will be entirely on drug inhibition of enzymes as a primary mechanism to which drugs owe their efficacy. We will consider how enzyme activity is assayed, how inhibitors are found (or made) and characterized, how enzyme inhibition is demonstrated in vivo, and some specific examples of enzyme inhibitors that are used as drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ackermann, W. W. and Potter, V. R. (1949) Enzyme inhibition in relation to chemotherapy. Proc. Soc. Exp. Biol. Med. 72, 1–9.

    PubMed  CAS  Google Scholar 

  • Antonaccio, M.J. (1982) Angiotensin converting enzyme (ACE) inhibitors. Ann. Rev. Pharmacol. Toxicol. 22, 57–87.

    Article  CAS  Google Scholar 

  • Ask, A.-L., Fagervall, I., and Ross, S. B. (1983) Selective inhibition of monoamine oxidase in monoaminergic neurons in the rat brain. Naunyn-Schmiedeberg’s Arch. Pharmacol. 324, 79–87.

    Article  CAS  Google Scholar 

  • Baldessarini, R. J. and Greiner, E. (1973) Inhibition of catechol-O-methyl transferase by catechols and polyphenols. Biochem. Pharmacol. 22, 247–256.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, A. J. (1980) Proteinase Inhibitors: Potential Drugs?, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Bartholini, G. and Pletscher, A. (1969) Effect of various decarboxylase inhibitors on the cerebral metabolism of dihydroxyphenylalanine. J. Pharm. Pharmacol. 21, 323–324.

    Article  PubMed  CAS  Google Scholar 

  • Bondinell, W. E., Chapin, F. W., Frazee, J. S., Girard, G. R., Holden, K. G., Kaiser, C., Maryanoff, C., and Perchonock, C. D. (1983) Inhibitors of phenylethanolamine N-methyltransferase and epinephrine biosynthesis: A potential source of new drugs. Drug Metab. Rev. 14, 709–721.

    Article  PubMed  CAS  Google Scholar 

  • Borchardt, R. T. (1977) Synthesis and Biological Activity of Analogues of Adenosylhomocysteine as Inhibitors of Methyltransferases, in The Biochemistry of S-Adenosylmethionine ( Salvatore, F., Borek, E., Zappia, V., Williams-Ashman, H. G., and Schlenk, F., eds.) Columbia University Press, New York.

    Google Scholar 

  • Brannon, D. R. and Fuller, R. W. (1974) Microbial production of pharmacologically active compounds other than antibiotics. Lloydia 37, 134–146.

    PubMed  CAS  Google Scholar 

  • Cheng, Y.-C. and Prusoff, W. H. (1973) Relationship between the inhibition constant (K,) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 22, 3099–3108.

    Article  PubMed  CAS  Google Scholar 

  • Cleland, W. W. (1967) The statistical analysis of enzyme kinetic data. Adv. Enzymol. 29, 1–32.

    PubMed  CAS  Google Scholar 

  • Davidson, J., Zung,W. W. K., and Walker, J. I. (1984) Practical aspects of MAO inhibitor therapy. J. Clin. Psychiatr. 45, 81–84.

    CAS  Google Scholar 

  • Duch, D. S., Bowers, S., Edelstein, M., and Nichol, C. A. (1979) Histamine: Elevation of Brain Levels by Inhibition of Histamine N-methyl Transferase, in Transmethylation ( Usdin, E., Borchardt, R. T., and Creveling, C. R., eds.) Elsevier/North-Holland, New York, Amsterdam, London.

    Google Scholar 

  • Elion, G. B. (1978) Allopurinol and Other Inhibitors of Urate Synthesis, in Handbook of Experimental Pharmacology vol. 51 Uric Acid ( Kelley, W. N. and Weiner, I. M., eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Fahn, S., Comi, R., Snider, S. R., and Prasad, A. L. N. (1979) Effect of a catechol-O-methyl transferase inhibitor, U-0521, with levodopa administration. Biochem. Pharmacol. 28, 1221–1225.

    Article  PubMed  CAS  Google Scholar 

  • Frere, J. M., Duez, C., Dusart, J., Coyette, J., Leyh-Bouille, M., Ghuysen, J. M., Dideberg, O., and Knox, J. (1980) Mode of Action of β-Lactam Antibiotics at the Molecular Level, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Fritz, H. and Wunderer, G. (1983) Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittel-Forsch. 33 (1), 479–494.

    CAS  Google Scholar 

  • Fuller, R. W. (1972) Selective inhibition of monoamine oxidase. Adv. Biochem. psychopharmacol. 5, 339–354.

    PubMed  CAS  Google Scholar 

  • Fuller, R. W. (1978) Selectivity among monoamine oxidase inhibitors and its possible importance for development of antidepressant drugs. Progr. Neuro-Psychopharmacol. 2, 303–311.

    Article  CAS  Google Scholar 

  • Fuller, R. W. and Hemrick-Luecke, S. K. (1985) Inhibition of types A and B monoamine oxidase by l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine. J. Pharmacol. Exp. Ther. 232, 696–701.

    PubMed  CAS  Google Scholar 

  • Fuller, R. W. and Nagarajan, R. (1978) Inhibition of methyltransferases by some new analogs of S–adenosvlhomocysteine. Biochem. Pharmacol. 27, 1981–1983.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, R. W., Ho, P. P. K., Matsumoto, C., and Clemens, J. A. (1977) New inhibitors of dopamine β-hydroxylase. Adv. Em. Regul. 15, 267–281.

    Article  CAS  Google Scholar 

  • Fuller, R. W., Snoddy, H. D., and Perry, K. W. (1982) Dopamine accumulation after dopamine β-hydroxylase inhibition in rat heart as an index of norepinephrine turnover. Life Sci. 31, 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Green, A. L. and El Hait, M. A. S. (1980) A new approach to the assessment of the potency of reversible monoamine oxidase inhibitors invivo), and its application to (+)-amphetamine, p-methoxyamphetamine and harmaline. Biochem. Pharmacol. 29, 2781–2789.

    Article  PubMed  CAS  Google Scholar 

  • Horita, A. and McGrath, W. R. (1960) The interaction between reversible and irreversible monoamine oxidase inhibitors. Biochem. Pharmacol. 3, 206–211.

    Article  PubMed  CAS  Google Scholar 

  • Kalman, T. I. (1979) Drug Action and Design: Mechanism-Based Enzyme Inhibitors. Elsevier/North-Holland, New York, Amsterdam, Oxford.

    Google Scholar 

  • Lienhard, G. E. (1980) Transition-State Analogues, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Lipinski, C. A. and Hutson, N. J. (1984) Aldose reductase inhibitors as a new approach to the treatment of diabetic complications. Ann. Repts. Med. Chem. 19, 169–177.

    Article  CAS  Google Scholar 

  • Moncada, S. and Vane, J. R. (1980) Inhibitors of Arachidonic Acid Metabolism, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Ortmann, R., Schaub, M., Felner, A., Lauber, J., Christen, P., and Waldmeier, P. C. (1984) Phenylethylamine-induced stereotypies in the rat: A behavioral test system for assessment of MAO-B inhibitors. Psychopharmacology 84, 22–27.

    Article  PubMed  CAS  Google Scholar 

  • Penning, T. M. (1983) Design of suicide substrates: An approach to the development of highly selective enzyme inhibitors as drugs. Trends Pharmacol. Sci. 4, 212–217.

    Article  CAS  Google Scholar 

  • Planz, G., Palm, D., and Quiring, K. (1973) On the evaluation of weak and reversible inhibitors of monoamine oxidase in vivo and in vitro. Arzneimittel-Forsch. 23, 281–285.

    CAS  Google Scholar 

  • Pletscher, A. and Besendorf, H. (1959) Antagonism between harmaline and long-acting monoamine oxidase inhibitors concerning the effect on 5-hydroxytryptamine and norepinephrine metabolism in the brain. Experientia 15, 25–26.

    Article  PubMed  CAS  Google Scholar 

  • Porter, C. C., Watson, L. S., Titus, D. C., Totaro, J. A., and Byer, S. S. (1962) Inhibition of the dopa decarboxylase by the hydrazino analog of α-methyldopa. Biochem. Pharmacol. 11, 1067–1077.

    Article  PubMed  CAS  Google Scholar 

  • Quitkin, F., Rifkin, A., and Klein, D. F. (1979) Monoamine oxidase inhibitors. Arch. Gen. Psychiat. 36, 749–760.

    PubMed  CAS  Google Scholar 

  • Rajashekhar, B., Fitzpatric, P. F., Colombo, G., and Villafranca, J. J. (1984) Synthesis of several 2 substituted 3-(p-hydroxyphenyl)-1-propenes and their characterization as mechanism based inhibitors of dopamine β-hydroxylase. J. Biol. Chem. 259, 6925–6930.

    PubMed  CAS  Google Scholar 

  • Rando, R. R. (1974) Chemistry and enzymology of kcat inhibitors. Science 185, 320–324.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R. B. (1983) Objection to terminology used in special reports. Chem. Eng. News 61 (43), 2.

    Google Scholar 

  • Sjoerdsma, A. (1981) Suicide enzyme inhibitors as potential drugs. Clin. Pharmacol. Ther. 30, 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Sjoerdsma, A. and von Studnitz, VV. (1963) Dopamine-β-oxidase activity in man, using hydroxyamphetamine as substrate. Br. J. Pharmacol. Chemother. 20, 278–284.

    PubMed  CAS  Google Scholar 

  • Srere, P. A. (1967) Enzyme concentrations in tissues. Science 158, 936–937.

    Article  PubMed  CAS  Google Scholar 

  • Umezawa, H. (1982) Low-molecular-weight enzyme inhibitors of microbial origin. Ann. Rev. Microbiol. 36, 75–99.

    Article  CAS  Google Scholar 

  • Waldmeier, P. C. and Baumann. P. A. (1983) Effects of CGP 11305A, a new reversible and selective inhibitor of MAO A, on biogenic amine levels and metabolism in the rat brain. Naunyn Schmiedebergs Arch. Pharmacol. 324, 20–26.

    Article  PubMed  CAS  Google Scholar 

  • Webb, J. L. (1963) Enzyme and Metabolic Inhibitors. Academic, New York.

    Google Scholar 

  • Wilkinson, G. N. (1961) Statistical estimations in enzyme kinetics. Biochem. J. 80, 324–332.

    PubMed  CAS  Google Scholar 

  • Wolfenden, R. (1976) Transition state analog inhibitors and enzyme catalysis. Ann. Rev. Biophus. Bioeng. 5, 271–306.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Fuller, R.W., Steranka, L.R. (1987). Drug Discovery at the Enzyme Level. In: Williams, M., Malick, J.B. (eds) Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-4612-4828-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4828-6_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9180-0

  • Online ISBN: 978-1-4612-4828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics