Skip to main content

Computer-Based Approaches to Drug Design

  • Chapter
Drug Discovery and Development

Abstract

Two major factors have influenced the dramatic growth in the use of computer-modeling techniques as an integral aspect of the drug discovery process. The first of these has been the increased availability of powerful, but relatively inexpensive, computer systems in both academic and industrial research laboratories. This provided researchers with direct access to a level of computational capacity that had previously been available only on large and prohibitively expensive mainframe computers. The second important factor was the availability of high-speed, high-resolution, graphical display systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abraham, R. J. and Hudson, B. (1984) Approaches to charge calculations in molocular mechanics. 2. Resonance effects in conjugated systems. J. Comp. Chem. 5, 562–570.

    Article  CAS  Google Scholar 

  • Abraham, R. J. and Parry, K. (1970) Rotational isomerism. VIII. A calculation of the rotational barriers and rotamer energies of some halogenated compounds. J. Chem. Soc. B, 539–545.

    Google Scholar 

  • Allinger, N. L. (1976) Calculation of molecular structure and energy by force-field methods. Adv. Phys. Org. Chem. 13, 1–82.

    Article  CAS  Google Scholar 

  • Andrews, P. R., Craik, D. J., and Martin, J. L. (1984) Functional group contributions to drug-receptor interactions. J. Med. Chem. 27, 1648–1657.

    Article  PubMed  CAS  Google Scholar 

  • Armarego, W. L. F., Waring, P., and Williams, J. W. (1980) Absolute configuration of 6-methyl-5,6,7,8-tetrahydropterin produced by enzymatic reduction (dihydrofolate reductase and NADPH) of 6-methyl-7,8-dihydropterin. Chem. Comm. 334–336.

    Google Scholar 

  • Baird, N. C. and Dewar, M. J. S. (1969) Ground state of sigma-bonded molecules. IV. M.I.N.D.O. method and its application to hydrocarbons. J. Chem. Phys. 50, 1262–1274.

    Article  CAS  Google Scholar 

  • Baker, D. J., Beddell, C. R., Champness, J. N., Goodford, P. J., Norrington, F. E. A., Smith,D. R., and Stammer, D. K. (1981) The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 126, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Bingham, R. C., Dewar, M. J. S., and Lo, D. H. (1975) Ground states of molecules. XXV. MINDO-3: An improved version of the MINDO semi-empirical SCF-MO method. J. Am. Chem. Soc. 97, 1285–1293.

    Article  CAS  Google Scholar 

  • Binkley, J. S., Frisch, M. J., DeFrees, D. J., Raghavachari, K., Whiteside, R. A., Schlegel, H. B., Fluder, E. M., and Pople, J. A. (1983) GAUSSIAN 82 Carnegie-Mellon University, Pittsburgh, Pennsylvania.

    Google Scholar 

  • Binkley, J. S., Whiteside, R. A., Krishman, R„ Seeger, R., DeFrees, D. J., Schlegel, H. B., Topiol, S., Kahn, L. R., and Pople, J. A. (1981) QCPE program 406. University of Indiana, Bloomington, Indiana.

    Google Scholar 

  • Blake, C. C. F. and Oatley, S. J. (1977) Protein-DNA and protein-hormone interactions in prealbumin: A model of the thyroid hormone nuclear receptor. Nature 268, 115–120.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C. C. F., Geisow, M.J., Oatley, S. J., and Rerat, C. J. (1978) Structure of prealbumin: Secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 angstroms. J. Mol. Biol. 121, 339–356.

    Article  PubMed  CAS  Google Scholar 

  • Blaney, J. M., Jorgenson, E. C., Connolly, M. L., Ferrin, T. E., Langridge, R., Oatley, S. J., Burridge, J. M., and Blake, C. C. F. (1982) Computer graphics in drug design: Molecular modeling of thyroid hormone-prealbumin interactions. J. Med. Chem. 25, 785–790.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., and Karplus, M. (1983) CHARMM: A program for macromolecular energy, minimization and dynamics calculations. J. Comp. Chem. 4, 187–217.

    Article  CAS  Google Scholar 

  • Bush, B. L. (1984) Interactive modeling of enzyme-inhibitor complexes at Merck Macromolecular Modeling graphics facility. Comp. Chem. 8, 1–11.

    Article  CAS  Google Scholar 

  • Colwell, W. T., Brown, V. H., Degraw, J. T., and Morrison, N. E. (1979) Inhibition of mycobacterial dihydrofolate reductase by 2,4-diamino-6-alkylpteridines and deazapteridines. Dev. Biochem. 215–218.

    Google Scholar 

  • Connolly, M. L. (1983a) Solvent-accessible surfaces of proteins and nucleic acids. Science 221, 709–813.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, M. L. (1983b) Analytical molecular surface calculation. J. Appl. Crystallogr. 16, 548–558.

    Article  CAS  Google Scholar 

  • Del Re, G. (1958) A simple M.O. L.C.A.O. method for calculating the charge distribution in saturated organic molecules. J. Chem. Soc. 4031–4040.

    Google Scholar 

  • Dewar, M. J. S. and Haselbach, E.)1970) Ground states of sigma-bonded molecules. IX. The MINDO/2 method. J. Am. Chem. Soc. 92, 590–598.

    Google Scholar 

  • Dewar, M. J. S. and Thiel, W. (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99, 4899–4907.

    Article  CAS  Google Scholar 

  • Dupius, M., Rys, J., and King, H. F. (1976) Evaluation of molecular integrals over Gaussian basis functions. J. Chem. Phys. 65, 111–116.

    Article  Google Scholar 

  • Dupius, M., Spangler, D., and Wendoloski, J. J. (1980) NRCC software catalog 1, program QG01, Lawrence Berkeley Laboratory, University of California, Berkeley, California.

    Google Scholar 

  • Eberhardt, N. L., Ring, J. C., Latham, K. R., and Baxter, J. D. (1979) Thyroid hormone receptors. Alterations of hormone binding Specificity. J. Biol. Chem. 254, 8534–8539.

    PubMed  CAS  Google Scholar 

  • Fontecilla-Camps, J. C., Bugg, C. E., Temple Jr., C., Rose, J. D., Montgomery, J. A., and Kisliuk, R. L. (1979) Absolute configuration of biological tetrahvdrofolates. A. crvstallographic determination. J. Am. Chem. Soc. 101, 6114–6115.

    Article  CAS  Google Scholar 

  • Hangaur, D. G., Monzingo, A. F., and Matthews, B. W. (1984) An interactive computer graphics study of thermolysin-catalyzed peptide cleavage and inhibition by N-carboxymethyl dipeptides. Biochemistry 23, 5730–5741.

    Article  Google Scholar 

  • Hansch, C., Li, R., Blaney, J. M., and Langridge, R. (1982) Comparison of the inhibition of Escherichia coli and Lactobacillus casei dihydrofolate reductase by 2,4-diamino-5-(substituted benzyl) pyrimidines: Quantitative structure-activity relationships, X-ray crystallography and computer graphics in structure-activity analysis. J. Med. Chem. 25, 777–784.

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson, J. B. (1961) Molecular Geometry. I. Machine computation of the common rings. J. Am. Chem. Soc. 83, 4537–4547.

    Article  CAS  Google Scholar 

  • Hitchings, G. H. and Roth B. (1980) Dihydrofolate Reductases as Targets for Selective Inhibitors, in Enzyme Inhibitors as Drugs ( Sandler, M., ed.) Macmillan, London.

    Google Scholar 

  • Lifson, S. and Warshel, A. (1968) Consistent force field calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49, 5116–5129.

    Article  CAS  Google Scholar 

  • Matthews, D. A., Alden, R. A., Bolin, J. T., Filman, D. J., Freer, S. T., Suong, R., and Kraut, J. (1978) Dihydrofolate reductase from Lactobacillus casei. X-ray structure of the enzvme-methotrexate-NADPH complex. J. Biol. Chem. 253, 6946–6954.

    PubMed  CAS  Google Scholar 

  • Matthews, D. A., Alden, R. A., Freer, S. T., Xuong, N. H., and Kraut, J. (1979) Dihydrofolate reductase from Lactobacillus casei. Stereochemistry of NADPH binding. J. Biol. Chem. 254, 4144–4151.

    PubMed  CAS  Google Scholar 

  • Momany, F. A. (1978) Determination of partial atomic charges from abinitio molecular electrostatic potentials. Application to formamide, methanol and formic acid. J. Phys. Chew. 82, 592–601.

    Article  CAS  Google Scholar 

  • Momany, F. A., McGuire, R. F., Burgess, A. W., and Scheraga, H. A. (1975) Energy parameters in polypeptides. VII. Geometric parameters, partial atomic charges, nonbonded interactions and intrinsic torsional potentials for the naturally occurring amino acids. J. Phys. Chem. 79, 2361–2381.

    Article  CAS  Google Scholar 

  • Monzingo, A. F. and Matthews, B. W. (1984) Binding of N-carboxymethyl dipeptide inhibitors to thermolysin determined by X-ray crystallography: A novel class of transition state analogues for zinc peptidases. Biochemistry 23, 5724–5729.

    Article  PubMed  CAS  Google Scholar 

  • Morihara, K. and Tsuzuki, H. (1970) Thermolysin: Kinetic study with oligopeptides. Eur. J. Biochem. 15, 374–380.

    Article  PubMed  CAS  Google Scholar 

  • Mulliken, R. S. (1962) Criteria for the construction of good self-consistent field molecular orbital wave functions, and the significance of L.C.A.O. M.O. population analysis. J. Chem. Phys. 36, 3428–3439.

    Article  CAS  Google Scholar 

  • Pople, J. A. and Gordon, M. (1967) Molecular orbital theory of the electronic structure of organic compounds. I. Substituent effects and dipole moments. J. Am. Chem. Soc. 89, 4253–4261.

    Article  CAS  Google Scholar 

  • Pople, J. A. and Segal, G. A. (1966) Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems. J. Chem. Phys. 44, 3289–3296.

    Article  CAS  Google Scholar 

  • Pople, J. A., Beveridge, D. L., and Dobosh, P. A. (1967) Approximate self-consistent orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Phys. 47, 2026–2033.

    Article  CAS  Google Scholar 

  • Salama, A. I., Insalaco, J. R., and Maxwell, R. A. (1971) Concerning the molecular requirements for the inhibition of uptake of racemic 3H-norepinephrine into rat cerebral cortex slices by tricyclic antidepressants and related compounds. J. Pharmacol. Exp. Ther. 178, 474–481.

    PubMed  CAS  Google Scholar 

  • Shotton, D. M. and Watson, H. C. (1970) Three-dimensional structure of tosyl-elastase. Nature 225, 811–816.

    Article  PubMed  CAS  Google Scholar 

  • Spark, M.J., Winkler, D. A., and Andrews, P. R. (1982) Conformational analysis of folates and folate analogues. Int. J. Quantum Chem., Quantum Biol. Symp. 9, 321–333.

    CAS  Google Scholar 

  • Stewart, J. J. P. and Dewar, M. J. S. (1983) QCPE program 455, University of Indiana, Bloomington, Indiana.

    Google Scholar 

  • Stolow, R. D., Samal, P. W„ and Giants, T. W. (1981) On CNDO/2—predicted charge alternation. J. Am. Chem. Soc. 103, 197–199.

    Article  CAS  Google Scholar 

  • Watson, H. C., Shotton, D. M., Cox, J. M., and Muirhead, H. (1970) Three-dimensional Fourier synthesis of tosyl-elastase at 3.5 angstrom resolution. Nature 225, 806–811.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, P. K. and Kollman, P. A. (1981) AMBER: Assisted model building with energy refinement. A general program for modeling molecules and their interactions. J. Comp. Chem. 2, 287–303.

    Article  CAS  Google Scholar 

  • Wiberg, K. B. (1965) A scheme for strain energy minimization. Application to the cycloalkanes. J. Am. Chem. Soc. 87, 1070–1078.

    Article  CAS  Google Scholar 

  • Wiberg, K. B. (1979) Infrared intensities. The methyl halides. Effect of substituents on charge distributions. J. Am. Chem. Soc. 101, 1718–1722.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Press Inc.

About this chapter

Cite this chapter

Loftus, P., Waldman, M., Hout, R.F. (1987). Computer-Based Approaches to Drug Design. In: Williams, M., Malick, J.B. (eds) Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-4612-4828-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4828-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9180-0

  • Online ISBN: 978-1-4612-4828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics