Skip to main content

Abstract

The discovery of drugs depends on a number of interdependent factors, including insight, serendipity, and persistence. A common characteristic of the successful program is a clearly delineated strategy based on quantitative pharmacological assays. The particular problem chosen often will influence this strategy and dictate the type of approach; that is, either a rational or an empirical one. Depending on this selection, the synthetic targets then will either be derived from drug design concepts for the former or developed around systematic variation of a lead compound for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, R. H. and Maycock, A. L. (1976) Suicide enzyme inactivators. Acc. Chew. Res. 9, 313–319.

    Article  CAS  Google Scholar 

  • Albers-Schonberg, G„ Arison, B. H., Chabala, J. C., Douglas, A. W., Eskola, P., Fisher, M. H., Lusi, A., Mrozik, H., Smith, J. L., and Tolman, R. L. (1981) Avermectins. Structure determination. J. Am. Chem. Soc. 103, 4216–4221.

    Google Scholar 

  • Albert, A. (1971) Relations between molecular structure 6501 and biological activity: Stages in the evolution of current concepts. Attn. Rev. Pharmacol. 11, 13–36.

    Article  CAS  Google Scholar 

  • Albert, A. (1982) The long search for valid structure-action relationships in drugs. J.Med. Chem. 25, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, A. W., Chen., Kuron, G., Hunt, V., Huff, H., Hoffman, C., Rothrock, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Albers-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J., and Springer, J. (1980) Mevinolin: A highly potent competitive inhibitor of hydroxymethvlglutaryl-coenzyme A reductase and a cholesterol- lowering agent. Proc. Natl. Acad. Sci. USA 77, 3957–3961.

    Article  PubMed  CAS  Google Scholar 

  • Anand, N. (1983) Molecules with restricted conformational mobility—an approach to drug design. Proc. Indian Natn. Sci. Acad. 49, A, 233–255.

    Google Scholar 

  • Andrews, P. R. and Winkler, D. A. (1984) The Design and Medicinal Applications of Transition State Analogues, in Drug Design: Fact or Fantasy? ( Jolles, G. and Wooldridge, K. R. H., eds.) Academic, New York.

    Google Scholar 

  • Ariens, E. J. (1971) A General Introduction to the Field of Drug Design, in Drug Design vol. I (Ariens, E.)., ed.) Academic, New York.

    Google Scholar 

  • Ariens, E. J. (1980) Design of Safer Chemicals, in Drug Design vol. IX ( Ariens, E. J., ed.) Academic, New York.

    Google Scholar 

  • Ariens, E. J. and Simonis, A. M. (1982) Optimalization of Pharmacokinetics—An Essential Aspect of Drug Development—by “Metabolic Stabilization,” in Strategy in Drug Research (Keverling Buisman, J. A., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Austel, V. (1982) A manual method for systematic drug design. Eur. J. Med. Chem. 17, 9–16.

    CAS  Google Scholar 

  • Austel, V. (1984) Design of test series in medicinal chemistry. Drugs of the Future 9, 349–365.

    Google Scholar 

  • Austel, V. and Kutter, E. (1981) The theory of sets as a tool in systematic drug design. Arzneimittelforsch. /Drug Res 31, 130–135.

    CAS  Google Scholar 

  • Baker, D.J., Beddell, C. R., Champness, J. N., Goodford, P.J., Norrington, F. E. A., Smith, D. R., and Stammers, D. K. (1981) The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 126, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Baldwin, J. J., Lumma, W. C., Lundell, G. F., Ponticello, G. S., Raab, A. W., Engelhardt, E. L., Hirschmann, R., Sweet, C. S., and Scriabine, A. (1979) Symbiotic approach to drug design: Anti-hypertensive β-adrenergic blocking agents. J. Med. Chern. 22, 1284–1290.

    Article  CAS  Google Scholar 

  • Bodor, N. (1982) Soft drugs: Strategies for Design of Safer Drugs, in Strategy in Drug Research ( Keverling Buisman, J. A., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Bodor, N. (1984a) Novel Approaches to the Design of Safer Drugs: Soft Drugs and Site-Specific Chemical Delivery Systems, in Advances in Drug Research vol. 13 (Testa, B., ed.) Academic, New York.

    Google Scholar 

  • Bodor, N. (1984b) Soft drugs: Principles and methods for the design of safe drugs. Med. Res. Rev. 4, 449–469.

    Article  PubMed  CAS  Google Scholar 

  • Boger, J. (1983) Renin Inhibitors. Design of Angiotensinogen Transition- State Analogs Containing Statine, in Peptides: Structure and Function ( Hruby, V. J. and Rich, D. H„ eds.) Pierce Chemical Company, Rockford, Illinois.

    Google Scholar 

  • Boger, J., Lohr, N. S„ Ulm, E. H., Poe, M., Blaine, E. H., Fanelli, G. M., Lin, T. Y„ Payne, L. S., Schorn, T. YV., LaMont, B. I., Vassil, T. C., Stabilito, I. I., Veber, D. F., Rich, D. H., and Bopari, A. S. (1983) Novel renin inhibitors containing the amino-acid statine. Nature 303, 81–84.

    Article  PubMed  CAS  Google Scholar 

  • Brugger, W. E. and Jurs, P. C. (1977) Extraction of important molecular features of musk compounds using pattern recognition techniques. J. Agric. Food Chem. 25, 1158–1164.

    Article  PubMed  CAS  Google Scholar 

  • Burchall, J. J. and Hitchings, G. H. (1965) Inhibitor binding analysis of dihydrofolate reductases from various species. Mol. Pharmacol. 1, 126–136.

    PubMed  CAS  Google Scholar 

  • Burger, A. (1970) Hallucinogenic Agents, in Medicinal Chemistry 3rd ed. ( Burger, A., ed.) Wiley-Interscience, New York.

    Google Scholar 

  • Burger, A. (1983) A Guide to the Chemical Basis of Drug Design. Wiley, New York.

    Google Scholar 

  • Bustard, T. M. (1974) Optimization of alkyl modifications by Fibonacci search. J. Med. Chem. 17, 777–778.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, J. G., Lee, T., Goldman, D., Long, J. P., Flynn, J. R., Verimer, T., Costall, B., and Naylor, R. J. (1980) Congeners of the β conformer of dopamine derived from cis- and tras-octahydrobenzo(f)quinoline and trans-octahydrobenzo(g) quinoline. J. Med. Chem. 23, 1–5.

    Article  PubMed  CAS  Google Scholar 

  • Cha, S., Agarwal, R. P., and Parks, R. E., Jr. (1975) Tight-binding inhibitors. II. Non-steady state nature of inhibition of milk xanthine oxidase by allopurinol and alloxanthine and of human erythrocytic adenosine deaminase by coformycin. Biochem. Pharmacol. 24, 2187–2197.

    Google Scholar 

  • Charton, M. (1983) The Upsilon Steric Parameter-Definition and Determination, in Steric Effects in Drug Design (Charton, M. and Motoc, I., eds.) Springer-Verlag, New York.

    Google Scholar 

  • Charton, M. and Motoc, I. (1983) Introduction, in Steric Effects in Drug Design ( Charton, M. and Motoc, I., eds.) Springer-Verlag, New York.

    Google Scholar 

  • Chou, J. T. and Jurs, P. C. (1979) Computer-assisted computation of partition coefficients from molecular structures using fragment constants. J. Chem. Inf. Comput. Sci. 19, 172–178.

    Article  CAS  Google Scholar 

  • Cohen, N. C. (1983) Towards the rational design of new leads in drug research. TIPS 503–506.

    Google Scholar 

  • Conover, L. H. (1971) Discovery of drugs from microbiological sources. Adv. Chem. Ser. 108, 33–80.

    Article  CAS  Google Scholar 

  • Cromartie, T. H. and Walsh, C. (1975) Mechanistic studies on the rat kidney flavoenzyme L-alpha-hvdroxyacid oxidase. Biochemistry 14, 3482–3489.

    Article  PubMed  CAS  Google Scholar 

  • Curd, J., Smith, T. W., Jaton, J. C., and Haber, E. (1971) The isolation of digoxin-specific antibodv and its use in reversing the effects of digoxin. Proc. Natl. Acad. Sci. USA 68, 2401–2406.

    Article  PubMed  CAS  Google Scholar 

  • Douglas, K. T. (1983) Transition-state analogues in drug design. Chem. Ind.. 311–315.

    Google Scholar 

  • Duchamp, D. J. (1979) Molecular mechanics and crystal structure analysis in drug design. ACS Symp. Ser. 112. 79–102.

    Article  CAS  Google Scholar 

  • Dufau, M. L„ Ryan, D. W., Baukal, A. J., and Catt, K. J. (1975) Gonadotropin receptors. Solubilization and purification by affinity chromatography. J. Biol. Chem. 250. 4822–4824.

    CAS  Google Scholar 

  • Dunn, W. J., Greenberg, M. J., and Callejas, S. S. (1976) Use of cluster- analysis in development of structure-activity relations for antitumor triazenes. J.Med. Chem. 19, 1299–1301.

    Article  PubMed  CAS  Google Scholar 

  • Editorial (1981) Drug licensing or innovation. Lancet II, 788.

    Google Scholar 

  • Endo, A., Kuroda, M., and Tsujita, Y. (1976) ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiotics 29, 1346–1348.

    CAS  Google Scholar 

  • Esaki, T. (1982) Quantitative drug design studies. V. Approach to lead generation by pharmacophoric pattern searching. Chem. Pharm. Bull. (Tokyo) 30. 3657–3661.

    CAS  Google Scholar 

  • Farnsworth, N. R. and Bingel, A. S. (1977) Problems and prospects of discovering new drugs from higher plants by pharmacological screening. New Nat. Prod. Plant Drugs Pharmacol. I, Proc. Int. Cong., 1st, 1–22.

    Google Scholar 

  • Foye, W. O. (1974) Principles of Medicinal Chemistry pp. 93–102. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Free, S. M. and Wilson, J. VV. (1964) A mathematical contribution to structure-activity studies. J. Med. Chem. 7, 395–399.

    Article  PubMed  CAS  Google Scholar 

  • Freidinger, R. M. and Veber, D. F. (1984) Design of novel cyclic hexapep- tide somatostatin analogs from a model of the bioactive conformation. ACS Symp. Ser. 251, 169–187.

    Article  CAS  Google Scholar 

  • Fujita, T. (1984) The Role of QSAR in Drug Design, in Drug Design: Fact or Fantasy? ( Jolles, G. and Wooldridge, K. R. H., eds.) Academic, New York.

    Google Scholar 

  • Gabayani, Z., Surjan, P., and Naray-Szabo, G. (1982) Application of topological molecular transforms to rational drug design. Eur. J. Med. Chem.-Chim. Ther. 17, 307–311.

    Google Scholar 

  • Ganellin, C. R. (1982) Cimetidine, in Chronicles of Drug Discovery vol. 1 (Bindra, J. S. and Lednicer, D., eds.) Wiley, New York.

    Google Scholar 

  • Goodford, P. J. (1984) Drug design by the method of receptor fit. J. Med. Chem. 27, 557–564.

    Google Scholar 

  • Gordon, E. M., Godfrey, J. D., Pluscec, J., VonLangen, D., and Natarajan, S. (1985) Design of peptide derived amino alcohols as transition- state analog inhibitors of angiotensin converting enzyme. Biochern. Biophys. Res. Commun. 126, 419–426.

    Article  CAS  Google Scholar 

  • Gross, F. (1984) Antihypertensive therapy: Modern concepts, future aspects in research. Triangle 23, 25–32.

    Google Scholar 

  • Gund, P. (1984) Present and future computer aids to drug design. X-Ray Crystallogr. Drug Action, Course Int. Sch. Crystallogr. 9th, 495–506.

    Google Scholar 

  • Haber, E. (1983) Antibodies as models for rational drug design. Biochem. Pharmacol. 32, 1967–1977.

    Article  PubMed  CAS  Google Scholar 

  • Halberstam, M. J. (1979) Too many drugs? Forum on Medicine 2, 170–291.

    PubMed  CAS  Google Scholar 

  • Hansch, C. (1974) Bioisosterism. Intrascience Chem. Rep. 8, 17–25.

    CAS  Google Scholar 

  • Hansch, C. (1982) Dihydrofolate reductase inhibition. A study in the use of X-ray crystallography, molecular graphics, and quantitative structure-activity relations in drug design. Drug. Intel. Clin. Pharm. 16, 391–396.

    CAS  Google Scholar 

  • Hansch, C. (1984) On the state of QSAR. Drug. Infor. J. 18, 115–122.

    CAS  Google Scholar 

  • Hansch, C. and Blaney, J. M. (1984) The New Look to QSAR, in Drug Design: Fact or Fantasy? (Jolles, G. and Wooldridge, K. K. H., eds.) Academic, New York.

    Google Scholar 

  • Hansch, C. and Leo, A. J. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York.

    Google Scholar 

  • Hansch, C., Unger, S. H., and Forsythe, A. B. (1973) Strategy in drug design. Cluster analysis as an aid in the selection of substituents. J. Med. Chem. 16, 1217–1222.

    Article  PubMed  CAS  Google Scholar 

  • Hathway, D. E. (1982) Structure-activity considerations; a synthesis of ideas. Chem. Biol. Interact. 42. 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Henry, D. R., Jurs, P. C, and Denny, W. A. (1982) Structure-antitumor activity relationships of 9-anilinoacridines using pattern recognition. J. Med. Chem. 25, 899–908.

    Article  PubMed  CAS  Google Scholar 

  • Hopfinger, A. J. (1984) Computational chemistry, molecular graphics and drug design. Pharm. Int. 5, 224–228.

    CAS  Google Scholar 

  • Jurs, P. C. (1983) Studies of relationships between molecular structure and biological activity by pattern recognition methods. Struct.-Act. Correl. Predict. Tool Toxicol. (Golberg, L., ed.) Hemisphere, Washington, DC.

    Google Scholar 

  • Jurs, P. C., Ham, C. L., and Brugger, W. E. (1981) Computer-assisted studies of chemical structure and olfactory quality using pattern recognition techniques. ACS Symp. Ser. 148. 143–160.

    Article  CAS  Google Scholar 

  • Jurs, P. C., Hasan, M. N., Henry, D. R., Stouch, T. R„ and Whalen- Pedersen, E. K. (1983) Computer-assisted studies of molecular structure and carcinogenic activity. Fund. Appl. Toxicol. 3, 343–349.

    Article  CAS  Google Scholar 

  • Kalman, T. I. (1981) Enzyme inhibition as a source of new drugs. Drug Dev. Res. 1, 311–328.

    Article  CAS  Google Scholar 

  • Kier, L. B. (1980) Molecular Connectivity as a Description of Structure for SAR Analyses, in Physical Chemical Properties of Drugs ( Yalkowskv, S. H., Sinkula, A. A., and Valvani, S. C., eds.) Dekker, New York.

    Google Scholar 

  • Kirschner, G. L. and Kowalski, B. R. (1979) The Application of Pattern Recognition to Drug Design, in Drug Design vol. VIII ( Ariens, E. J., ed.) Academic, New York.

    Google Scholar 

  • Klopman, G. and Contreras, R. (1985) Use of artificial intelligence in structure-activity correlations of anticonvulsant drugs. Mol. Pharmacol. 27, 86–93.

    PubMed  CAS  Google Scholar 

  • Kohli, J. D., Goldberg, L. I., and Nand, N. (1979) 1-Aminomethyl isochromans: New vascular dopamine agents. Pharmacologist 21, 202.

    Google Scholar 

  • Korolkovas, A. and Burckhalter, J. H. (1976) Essentials of Medicinal Chemistry, pp. 23–26. Wiley, New York.

    Google Scholar 

  • Kutter, E. and Austel, V. (1981) Application of the theory of sets to drug designArzneimittelforsch. /Drug Res 31, 135–141.

    CAS  Google Scholar 

  • Kuyper, L. F., Roth, B„ Baccanari, D. P., Ferone, R., and Beddell, C. R. (1982) Receptor-based design of dihydrofolate-reductase inhibitors- comparison of crystallographically determined enzyme binding with enzyme affinity in a series of carboxy-substituted trimethoprim analogs. J. Med. Chem. 25, 1120–1122.

    Google Scholar 

  • Lee, H. J., Khalil. M. A., and Lee, J. W. (1984) Antedrug—a conceptual basis for safer anti-inflammatory steroids. Drugs Under Experimental and Chemical Research 10, 835–844.

    Google Scholar 

  • Lienhard, G. E. (1972) Transition state analogs as enzyme inhibitors. Ann. Rep. Med. Chem. 7, 249–258.

    Article  CAS  Google Scholar 

  • Lienhard, G. E. (1973) Enzvme catalysis and transition-state theorv. Science 180, 140–154.

    Article  Google Scholar 

  • Lindquist, R. N. (1975) The Design of Enzyme Inhibitors: Transition State Analogs, in Drug Design vol. V (Ariens, E., ed.) Academic, New- York.

    Google Scholar 

  • Marciniszyn, Hartsuck, J. A., and Tang, J. (1976) Mode of inhibition of acid proteases by pepstatin. J. Biol. Chem. 251, 7088–7094.

    PubMed  CAS  Google Scholar 

  • Marshall, G. R. (1984) Computational Chemistry and Receptor Characterization, in Drug Design: Fact or Fantasy? ( Jolles, G. and Wooldridge, K. R. H., eds.) Academic, New York.

    Google Scholar 

  • Marshall, G. R., Barry, C. D., Bosshard, H. E., Dammkoehler, R. A., and Dunn, D. A. (1979) The conformational parameter in drug design: The active analog approach. ACS Symp. Ser. 112. 205–226.

    Article  CAS  Google Scholar 

  • Martin. Y. C. (1978) Quantitative Drug Design. A Critical Introduction. Dekker. New York.

    Google Scholar 

  • Martin, Y. C. (1979) Advances in the Methodology of Quantitative Drug Design, in Drug Design vol. VIII ( Ariens, E. J., ed.) Academic, New York.

    Google Scholar 

  • Martin, Y. C. (1981) A practitioner’s perspective of the role of quantitative structure-activity analvsis in medicinal chemistry. J. Med. Chem. 24, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Martin, Y. C. (1983) Studies of relationships between structural properties and biological activity by Hansch analysis. Struct.-Act. Correl. Predict. Tool Toxicol. (Golberg, L., ed.), Hemisphere, Washington, DC.

    Google Scholar 

  • Martin, Y. C. and Panas, H. N. (1979) Mathematical considerations in series design. J. Med. Chem. 22, 784–791.

    Article  PubMed  CAS  Google Scholar 

  • Martin. Y. C., Holland, J. B., Jarboe, C. H„ and Plotnikoff, N. (1974) Discriminant analysis of the relationship between physical properties and the inhibition of monoamine oxidase by aminotetralins and aminoindans. J. Med. Chem. 17, 409–416.

    Article  PubMed  CAS  Google Scholar 

  • Maxwell, R. A. (1984) The state of the art of the science of drug discovery—an opinion. Drug Dev. Res. 4, 375–389.

    Article  CAS  Google Scholar 

  • Metcalf, B. W. and Jund, K. (1977) Synthesis of beta, gamma-unsaturated amino acids as potential catalytic irreversible enzyme inhibitors. Tetrahedron Lett. 3689–3692.

    Google Scholar 

  • Meunier, J. C., Olson, R. YV., Menez, A., Fromageot, P., Boquet, P., and Changeux, J. P. (1972) Some physical properties of the cholinergic receptor protein from Electrophorus electricus revealed by a tritiated a-toxin from Naja nigricollis venom. Biochemistry 11, 1200–1210.

    Article  PubMed  CAS  Google Scholar 

  • Motoc, I., ed. (1983) Molecular Shape Descriptors, in Steric Effects in Drug Design ( Charton, M. and Motoc, I., eds.) Springer-Verlag, New York.

    Google Scholar 

  • Nicolaus, B. J. R. (1983) Symbiotic Approach to Drug Design, in Decision Making in Drug Research ( Gross, F., ed.) Raven, New York.

    Google Scholar 

  • Notari, R. E. (1981) Prodrug design. Pharmacol. Ther. 14, 25–53.

    Article  PubMed  CAS  Google Scholar 

  • Oelschlager, II. (1982) Drug Biotransformation as a Source of Drug Development, in Strategy in Drug Research ( Keverling Buisman, J. A., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Olson, G. L., Cheung, H., Morgan, K. D., Blount, J. F., Todaro, L., Berger, L., Davidson, A. B., and Boff, E. (1981) A dopamine receptor model and its application in the design of a new class of rigid pyrrolo[2,3-g] lisoquinoline antipsychotics. J. Med. Chem. 24, 1026–1034.

    Article  PubMed  CAS  Google Scholar 

  • Pitman, I. H. (1981) Pro-drugs of amides, imides and amines. Med. Res. Rev. 1, 189–214.

    Article  PubMed  CAS  Google Scholar 

  • Ramiller, N. (1984) Computer-assisted studies in structure-activity relationships. Am. Lab. 78–88.

    Google Scholar 

  • Rando, R. R. (1977) Mechanism of irreversible inhibition of gamma-amino- butyric acid alpha-ketoglutaric acid transaminase by neurotoxin gabaculine. Biochemistry 16. 4604–4610.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, F. A. (1974) Therapeutic innovation—the end or a new beginning? Chem. Brit. 10. 129–136.

    CAS  Google Scholar 

  • Rose, S. L. and Jurs, P. C. (1982) Computer-assisted studies of structure activity relationships of N-nitroso compounds using pattern recognition. J. Med. Chem. 25. 769–776.

    Article  PubMed  CAS  Google Scholar 

  • Rozenblit, A. B. (1982) Computer-Assisted Drug Design. Strategy and Algorithms, in Strategy in Drug Research ( Keverling Buisman, J. A., ed.) Elsevier, Amsterdam.

    Google Scholar 

  • Schmidt, P. G., Bernatowicz, M. S., and Rich. D. H. (1982) Pepstatin binding to pepsin-enzyme conformation changes monitored by nuclear magnetic resonance. Biochemistry 21, 6710–6716.

    Article  PubMed  CAS  Google Scholar 

  • Seiler, M. P. and Markstein, R. (1984) Further characterization of structural requirements for agonists at the striatal dopamine D2 receptor and a comparison with those at the striatal dopamine D1, receptor. Mol. Pharmacol. 26, 452–457.

    PubMed  CAS  Google Scholar 

  • Silverman, R. B. and Hoffman, S. J. (1984) The organic chemistry of mechanism-based enzyme inhibition: A chemical approach to drug design. Med. Res. Rev. 4, 415–447.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R. B. and Levy, M. A. (1981) Mechanism of inactivation of gamma-aminobutyric acid alpha-ketoglutaric acid aminotransferase by 4-amino-5-halopentanoic acids. Biochemistry 20, 1197–1203.

    Article  PubMed  CAS  Google Scholar 

  • Skala, G., Smith, C. W., Taylor, C. J. and Ludens, J. H. (1984) A conformationally constrained vasopressin analog with antidiuretic antagonistic activity. Science 226, 443–445.

    Article  PubMed  CAS  Google Scholar 

  • Smith. T. W., Butler, V. P., Haber, E., Fozzard, H„ Marcus, F. I., Bremner, VV. F., Schulman, I. C., and Phillips, A. (1982) Treatment of life-threatening digitals intoxication with digoxin-specific Fab antibody fragments. N. Eng. J. Med. 307, 1357–1362.

    Article  Google Scholar 

  • Soper, T. S., Manning,. M., Marcotte, P. A., and Walsh, C. T. (1977) Inactivation of bacterial D-amino acid transaminases by olefinic amino acid-K-vinylglycine. J. Biol. Chem. 252, 1571–1575.

    PubMed  CAS  Google Scholar 

  • Stark, G. R. and Bartlett, P. A. (1983) Design and use of potent, specific enzyme inhibitors. Pharmacol. Ther. 23, 45–78.

    Article  PubMed  CAS  Google Scholar 

  • Testa, B. (1984) Drugs? Drug research? Advances in drug research? Musings of a Medicinal Chemist, in Advances in Drug Research vol. 13 Academic, New York.

    Google Scholar 

  • Tewksbury, D. A., Dart, R. A., and Travis, J. (1981) The amino terminal amino acid sequence of human angiotensinogen. Biochem. Biophys. Res. Commun. 99, 1311–1315.

    CAS  Google Scholar 

  • Thornber, C. VV. (1979) Isosterism and molecular modification in drug design. Chem. Soc. Rev. 18, 563–580.

    Article  Google Scholar 

  • Thorsett, E. D., Harris, E. E., Peterson, E. R., Greenlee, VV. J., Patchett. A. A., Ulm, E. H., and Vassil, T. C. (1982) Phosphorus-containing inhibitors of angiotensin converting enzyme. Proc. Natl. Acad. Sci. USA 79, 2176–2180.

    CAS  Google Scholar 

  • Tickle, I. J., Sibanda, B. L., Pearl, L. H., Hemmings, A. M., and Blundell, T. L. (1984) Protein crystallography, interactive computer graphics, and drug design. X-Ray Ctystallogr. Drug Action, Course Int. Sch. Crystallogr. 9th, 427–440.

    Google Scholar 

  • Topliss, J. G. and Edwards, R. P. (1979) Chance factors in studies of quantitative structure-activity relationships. J. Med. Chem. 22. 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  • Topliss, J. G. and Martin, Y. C. (1975) Utilization of Operational Schemes for Analog Synthesis in Drug Design, in Drug Design vol. V ( Ariens, E. J., ed.) Academic, New York.

    Google Scholar 

  • Tute, M. S. (1971) Principles and Practice of Hansch Analysis: A Guide to Structure-Activity Correlation for the Medicinal Chemist, in Advances in Drug Research ( Harper, N. J. and Simmonds, A. B., eds.) Academic, New York.

    Google Scholar 

  • Veber, D. F. (1982) Peptide analogue design based on conformation. Special Publication of the Royal Society of Chemistry 42, 309–319.

    CAS  Google Scholar 

  • Venter, J. C. (1982) Immobilized and insolubilized drugs, hormones, and neurotransmitters: Properties, mechanisms of action and applications. Pharmacol. Rev. 34, 153–180.

    PubMed  CAS  Google Scholar 

  • Volkman, P. H., Kohli, J. D., Goldberg, L. I., Cannon, J. G., and Lee, T. (1977) Conformational requirements for dopamine-induced vasodilation. Proc. Natl. Acad. Sci. USA 74, 3602–3606.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, C. (1978) Chemical approaches to study of enzymes catalyzing redox transformations. Ann. Rev. Biochem. 47, 881–931.

    Article  PubMed  CAS  Google Scholar 

  • Weller, H. N., Gordon, E. M., Rom, M. B., and Pluscec, J. (1984) Design of conformationally constrained angiotensin-converting enzyme inhibitors. Biochem. Biophys. Ren. Commun. 125, 82–89.

    Article  CAS  Google Scholar 

  • Wermuth, C. G. (1984) Designing Prodrugs and Bioprecursors, in Drug Design; Fact or Fantasy? ( Jolles, G. and Wooldridge, K. R. H., eds.) Academic, New York.

    Google Scholar 

  • Westwood, R. (1981) The synthesis of novel heterocyclics as one approach to drug discovery. Bull. Soc. Chim. Belg. 90, 777–780.

    Article  CAS  Google Scholar 

  • Wold, S. and Dunn, W. J., Ill (1983) Multivariate quantitative Structure-activity relationships (QSAR): Conditions for their applicability. J. Chem. Inf. Comput. Sci. 23, 6–13.

    Article  CAS  Google Scholar 

  • Wolfenden, R. (1969a) On the rate-determining step in the action of adenosine deaminase. Biochemistry 8, 2409–2415.

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden, R. (1969b) Transition state analogs for enzyme catalvsis. Nature 223, 704–705.

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden, R. (1972) Analog approaches to the structure of the transition state in enzyme reactions. Acc. Chem. Res. 5, 10–18.

    Article  CAS  Google Scholar 

  • Wolfenden, R. (1976) Transition-state analog inhibitors and enzyme catalysts. Ann. Rev. Biophys. Bioeng. 5, 271–306.

    Article  CAS  Google Scholar 

  • Wolfenden, R. (1978) Transition-State Affinity as a Basis for the Design of Enzyme Inhibitors, in Transition States of Biochemical Processes Plenum, New York.

    Google Scholar 

  • Wooldridge, K. R. H. (1984) The Virtues of Present Strategies for Drug Discovery, in Drug Design: Fact or Fantasy? ( Jolles, G. and VVooldridge, K. R. H., eds.) Academic, New York.

    Google Scholar 

  • Wootton, R., Cranfield, R., Sheppey, G. C., and Goodford, P. J. (1975) Physicochemical-activitv relationships in practice. 2. Rational selection of benzenoid substituents. J. Med. Chem. 18, 607–613.

    Article  PubMed  CAS  Google Scholar 

  • Yuta, K. and Jurs, P. C. (1981) Computer-assisted structure-activity studies of chemical carcinogens. Aromatic amines. J. Med. Chem. 24, 241–251.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Humana Pres Inc.

About this chapter

Cite this chapter

Baldwin, J.J. (1987). Drug Design. In: Williams, M., Malick, J.B. (eds) Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-4612-4828-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4828-6_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9180-0

  • Online ISBN: 978-1-4612-4828-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics