Skip to main content

Auditory Computations for Biosonar Target Imaging in Bats

  • Chapter
Auditory Computation

Abstract

Bats are nocturnal flying mammals classified in the order Chiroptera. These animals have evolved a biological sonar, called echolocation, to orient in darkness—to guide their flight around obstacles and to detect their prey (Griffin 1958; Novick 1977; Neuweiler 1990; see Popper and Fay 1995). Echolocating bats broadcast ultrasonic sonar signals that travel outward into the environment, reflect or scatter off objects, and return to the bat’s ears as echoes. First the outgoing sonar signal and then the echoes impinge on the ears to act as stimuli, and the bat’s auditory system processes the information carried by these sounds to reconstruct images of targets (Schnitzler and Henson 1980; Simmons and Kick 1984; Suga 1988, 1990; Simmons 1989; Dear, Simmons, and Fritz 1993; Dear et al. 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altes RA (1980) Detection, estimation, and classification with spectrograms. J Acoust Soc Am 67:1232–1246.

    Article  Google Scholar 

  • Altes RA (1984) Texture analysis with spectrograms. IEEE Trans Sonics-Ultrasonics SU-31:407–417.

    Google Scholar 

  • Beuter KJ (1980) A new concept of echo evaluation in the auditory system of bats. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 747–761.

    Google Scholar 

  • Bodenhamer RD, Pollak GD (1981) Time and frequency domain processing in the inferior colliculus of echolocating bats. Hear Res 5:317–355.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Covey E (1992) Frequency tuning properties of neurons in the inferior colliculus of an FM bat. J Comp Neurol 319:34–50.

    Article  PubMed  CAS  Google Scholar 

  • Casseday JH, Ehrlich D, Covey E (1994) Neural tuning for sound duration: role of inhibitory mechanisms in the inferior colliculus. Science 264:847–850.

    Article  PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat, Eptesicus fuscus. J Neurosci 6:2926–2940.

    PubMed  CAS  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11:3456–3470.

    PubMed  CAS  Google Scholar 

  • Dear SP, Suga N (1995) Delay-tuned neurons in the midbrain of the big brown bat. J Neurophysiol (Bethesda) 73:1084–1100.

    CAS  Google Scholar 

  • Dear SP, Simmons JA, Fritz J (1993) A possible neuronal basis for representation of acoustic scenes in auditory cortex of the big brown bat. Nature 364:620–623.

    Article  PubMed  CAS  Google Scholar 

  • Dear SP, Fritz J, Haresign T, Ferragamo M, Simmons JA (1993) Tonotopic and functional organization in the auditory cortex of the big brown bat, Eptesicus fuscus. J Neurophysiol (Bethesda) 70:1988–2009.

    CAS  Google Scholar 

  • Feng AS, Simmons JA, Kick SA (1978) Echo detection and target-ranging neurons in the auditory system of the bat, Eptesicus fuscus. Science 202: 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Ferragamo MJ, Haresign T, and Simmons JA (in press) Response properties in the inferior colliculus of the echolocating bat, Eptesicus fuscus: I. Frequency and latency dimensions of auditory spectrograms. J Comp Physiol A.

    Google Scholar 

  • Griffin DR (1958) Listening in the Dark. New Haven: Yale University Press. (Reprinted by Cornell University Press, Ithaca, NY, 1986.)

    Google Scholar 

  • Grinnell AD (1963) The neurophysiology of audition in bats: temporal parameters. J Physiol 167:67–96.

    PubMed  CAS  Google Scholar 

  • Haplea S, Covey E, Casseday JH (1994) Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. J Comp Physiol A 174:671–683.

    Article  PubMed  CAS  Google Scholar 

  • Haresign T, Wotton JM, Ferragamo MJ, and Simmons JA (in press) Sound localization by the big brown bat, Eptesicus fuscus. In: CF Moss and S Shettleworth (Eds.) Neuroethological Studies of Cognitive and Perceptual Processes, Westview Press, Boulder, CO.

    Google Scholar 

  • Hartley DJ (1992) Stabilization of perceived echo amplitudes in echolocating bats: II. The acoustic behavior of the big brown bat, Eptesicus fuscus, while tracking moving prey. J Acoust Soc Am 91:1133–1149.

    Article  PubMed  CAS  Google Scholar 

  • Henson OW Jr (1970) The ear and audition. In: Wimsatt WA (ed) Biology of Bats, Vol. 2. New York: Academic Press, pp. 181–263.

    Google Scholar 

  • Jen PHS, Schlegel PA (1982) Auditory physiological properties of neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. J Comp Physiol A 147:351–363.

    Article  Google Scholar 

  • Jen PHS, Sun X, Lin PJJ (1989) Frequency and space representation in the primary auditory cortex of the frequency modulating bat Eptesicus fuscus. J Comp Physiol A 165:1–14.

    Article  PubMed  CAS  Google Scholar 

  • Kick SA (1982) Target detection by the echolocating bat, Eptesicus fuscus. J Comp Physiol 145:431–435.

    Article  Google Scholar 

  • Kick SA, Simmons JA (1984) Automatic gain control in the bat’s sonar receiver and the neuroethology of echolocation. J Neurosci 4:2725–2737.

    PubMed  CAS  Google Scholar 

  • Kober R, Schnitzler H-U (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:874–881.

    Article  Google Scholar 

  • Kurta A, Baker RH (1990) Eptesicus fuscus. Mamm Species 356:1–10.

    Article  Google Scholar 

  • Kuwabara N, Suga N (1993) Delay lines and amplitude selectivity are created in subthalamic auditory nuclei: the brachium of the inferior colliculus of the mustached bat. J Neurophysiol (Bethesda) 69:1713–1724.

    CAS  Google Scholar 

  • Langner G (1992) Periodicity coding in the auditory system. Hear Res 60: 115–142.

    Article  PubMed  CAS  Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat: I. Neuronal mechanisms. J Neurophysiol (Bethesda) 60:1799–1822.

    CAS  Google Scholar 

  • Lawrence BD, Simmons JA (1982) Measurements of atmospheric attenuation at ultrasonic frequencies and the significance for echolocation by bats. J Acoust Soc Am 71:585–590.

    Article  PubMed  CAS  Google Scholar 

  • Licklider JCR (1951) A duplex theory of pitch perception. Experientia 7:128–134.

    Article  PubMed  CAS  Google Scholar 

  • Menne D (1985) Theoretical limits of time resolution in narrow band neurons. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 96–107.

    Google Scholar 

  • Menne D (1988) Is the structure of bat echolocation calls an adaptation to the mammalian hearing system? J Acoust Soc Am 83:2447–2449.

    Article  PubMed  CAS  Google Scholar 

  • Menne D, Kaipf I, Wagner I, Ostwald J, Schnitzler HU (1989) Range estimation by echolocation in the bat Eptesicus fuscus: trading of phase versus time cues. J Acoust Soc Am 85:2642–2650.

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Schnitzler H-U (1989) Accuracy of target ranging in echolocating bats: acoustic information processing. J Comp Physiol A 165:383–393.

    Article  Google Scholar 

  • Moss CF, Simmons JA (1993) Acoustic image representation of a point target in the bat, Eptesicus fuscus: evidence for sensitivity to echo phase in bat sonar. J Acoust Soc Am 93: 1553–1562.

    Article  PubMed  CAS  Google Scholar 

  • Moss CF, Zagaeski M (1994) Acoustic information available to bats using frequency-modulated sounds for the perception of insect prey. J Acoust Soc Am 95:2745–2756.

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641.

    PubMed  CAS  Google Scholar 

  • Novick A (1977) Acoustic orientation. In: Wimsatt WA (ed) Biology of Bats, Vol. 3. New York: Academic Press, pp. 73–287.

    Google Scholar 

  • Park TJ, Pollak GD (1993) GABA shapes a topographic organization of response latency in the mustache bat’s inferior colliculus. J Neurosci 13:5172–5187.

    PubMed  CAS  Google Scholar 

  • Pollak GD (1988) Time is traded for intensity in the bat’s auditory system. Hear Res 36:107–124.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD (1993) Some comments on the proposed perception of phase and nanosecond time disparities by echolocating bats. J Comp Physiol A 172: 523–531.

    Article  PubMed  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. New York: Springer-Verlag.

    Google Scholar 

  • Pollak GD, March DS, Bodenhamer R, Souther A (1977) Characteristics of phasic on neurons in inferior colliculus of unanesthetized bats with observations relating to mechanisms for echo ranging. J Neurophysiol (Bethesda) 40: 926–942.

    CAS  Google Scholar 

  • Poon PWF, Sun X, Kamada T, Jen PHS (1990) Frequency and space representation in the inferior colliculus of the FM bat, Eptesicus fuscus. Exp Brain Res 79:83–91.

    Article  PubMed  CAS  Google Scholar 

  • Popper A, Fay RR (1995) Handbook of Auditory Research, Vol. 5, Hearing by Bats. New York: Springer-Verlag.

    Google Scholar 

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 309–353.

    Google Scholar 

  • Saillant PA, Simmons JA, Dear SP, McMullen TA (1993) A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: the spectrogram correlation and transformation receiver. J Acoust Soc Am 94:2691–2712.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S (1992) Perception of structured phantom targets in the echolocating bat, Megaderma lyra. J Acoust Soc Am 91:2203–2223.

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U, Henson OW Jr (1980) Performance of airborne animal sonar systems: I. Microchiroptera. In: Busnel R-G, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 109–181.

    Google Scholar 

  • Schnitzler H-U, Menne D, Hackbarth H (1985) Range determination by measuring time delay in echolocating bats. In: Michelsen A (ed) Time Resolution in Auditory Systems. New York: Springer-Verlag, pp. 180–204.

    Google Scholar 

  • Schweizer H (1981) The connections of the inferior colliculus and the organization of the brainstem auditory system in the greater horseshoe bat (Rhinolophus ferrumequinum). J Comp Neurol 201:25–49.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1973) The resolution of target range by echolocating bats. J Acoust Soc Am 54:157–173.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1979) Perception of echo phase information in bat sonar. Science 207:1336–1338.

    Article  Google Scholar 

  • Simmons JA (1989) A view of the world through the bat’s ear: the formation of acoustic images in echolocation. Cognition 33:155–199.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA (1992) Time-frequency transforms and images of targets in the sonar of bats. In: Bialek W (ed) Princeton Lectures on Biophysics. River Edge, NJ: World Scientific, pp. 291–319.

    Google Scholar 

  • Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus. J Comp Physiol A 172:533–547.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Chen L (1989) The acoustic basis for target discrimination by FM echolocating bats. J Acoust Soc Am 86:1333–1350.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Dear SP (1991) Computational representations of sonar images in bats. Curr Biol 1:174–176.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Grinnell AD (1988) The performance of echolocation: the acoustic images perceived by echolocating bats. In: Nachtigall P, Moore PWB (eds) Animal Sonar: Processes and Performance. New York: Plenum Press, pp. 353–385.

    Google Scholar 

  • Simmons JA, Kick SA (1984) Physiological mechanisms for spatial filtering and image enhancement in the sonar of bats. Annu Rev Physiol 46:599–614.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Moss CF, Ferragamo M (1990) Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus. J Comp Physiol A 166:449–470.

    PubMed  CAS  Google Scholar 

  • Simmons JA, Ferragamo M, Moss CF, Stevenson SB, Altes RA (1990) Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: the shape of target images in echolocation. J Comp Physiol A 167:589–616.

    Article  PubMed  CAS  Google Scholar 

  • Simmons JA, Freedman EG, Stevenson SB, Chen L, Wohlgenant TJ (1989) Clutter interference and the integration time of echoes in the echolocating bat, Eptesicus fuscus. J Acoust Soc Am 86:1318–1332.

    Article  PubMed  CAS  Google Scholar 

  • Skolnik MI (1962) Introduction to Radar Systems. New York: McGraw-Hill.

    Google Scholar 

  • Suga N (1964) Recovery cycles and responses to frequency modulated tone pulses in auditory neurons of echolocating bats. J Physiol 175:50–80.

    PubMed  CAS  Google Scholar 

  • Suga N (1970) Echo-ranging neurons in the inferior colliculus of bats. Science 170:449–452.

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1988) Auditory neuroethology and speech processing: complex-sound processing by combination-sensitive neurons. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: Wiley, pp. 679–720.

    Google Scholar 

  • Suga N (1990) Cortical computational maps for auditory imaging. Neural Networks 3:3–21.

    Article  Google Scholar 

  • Suga N, Schlegel P (1973) Coding and processing in the nervous system of FM signal producing bats. J Acoust Soc Am 84:174–190.

    Article  Google Scholar 

  • Sullivan WE (1982) Neural representation of target distance in auditory cortex of the echolocating bat Myotis lucifugus. J Neurophysiol (Bethesda) 48:1011–1032.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Simmons, J.A. et al. (1996). Auditory Computations for Biosonar Target Imaging in Bats. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics