Skip to main content

Computational Models of Binaural Processing

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

Computational models in this chapter are defined to include models that lead to explicit, quantitative predictions for the phenomena that are being modeled. They may be posed purely in terms of the information that is available for the task, in which case the computed predictions are evaluated using information-theoretical or other statistical communication theory techniques, or they may be posed in terms of mechanisms or algorithms. Both types of computational models are included in this chapter. We do not include models that have been suggested but not evaluated or models which are not sufficiently explicit to allow precise predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear Res 49:281–298.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Rose JE, Hind JE, Brugge JF (1971) Temporal position of discharges in single auditory nerve fibers within the cycle of a sinewave stimulus: Frequency and intensity effects. J Acoust Soc Am 49:1131–1139.

    PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (1982) Detection of interaural delay in high-frequency noise. J Acoust Soc Am 71:147–152.

    Google Scholar 

  • Bernstein LR, Trahiotis C (1985) Lateralization of sinusoidally amplitude-modulated tones: Effects of spectral locus and temporal variation. J Acoust Soc Am 78:514–523.

    PubMed  CAS  Google Scholar 

  • Bilsen FA (1977) Pitch of noise signals: Evidence for a central spectrum. J Acoust Soc Am 61:150–161.

    PubMed  CAS  Google Scholar 

  • Bilsen FA, Goldstein JL (1974) Pitch of dichotically delayed noise and its possible spectral basis. J Acoust Soc Am 55:292–296.

    PubMed  CAS  Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge: MIT Press.

    Google Scholar 

  • Blauert J, Cobben W (1978) Some consideration of binaural cross correlation analysis. Acustica 39:96–103.

    Google Scholar 

  • Blauert J, Col J-P (1989) Etude de quelques aspects temporels de l’audition spatiale. Note-laboratoire LMA, No. 118. Marseilles: Centre National de la Recherche Scientifique.

    Google Scholar 

  • Blum JJ, Reed MC (1991) Further studies of a model for azimuthal encoding: lateral superior olive neuron response curves and developmental processes. J Acoust Soc Am 90:1968–1978.

    PubMed  CAS  Google Scholar 

  • Bodden M (1993) Modeling human sound-source localization and the cocktail party effect. Acta Acustica 1:43–55.

    Google Scholar 

  • Bonham BH, Lewis ER (1993) Development of sound source localization by interaural time/phase difference—a model. Soc Neurosci Abstr 19:887.

    Google Scholar 

  • Boudreau JC, Tsuchitani C (1968) Binaural interaction in the cat superior olive S segment. J Neurophysiol (Bethesda) 31:442–454.

    CAS  Google Scholar 

  • Brainerd MS, Knudsen EI, Esterly SD (1992) Neural derivation of sound source location: resolution of spatial ambiguities in binaural cues. J Acoust Soc Am 91:1015–1027.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Bronkhorst AW, Plomp R (1988) The effect of head-induced interaural time and level differences on speech intelligibility in noise. J Acoust Soc Am 83:1508–1516.

    PubMed  CAS  Google Scholar 

  • Bronkhorst AW, Plomp R (1989) Binaural speech intelligibility in noise for hearing-impaired listeners. J Acoust Soc Am 86:1374–1383.

    PubMed  CAS  Google Scholar 

  • Bronkhorst AW, Plomp R (1992) Effect of multiple speechlike maskers on binaural speech recognition in normal and impaired hearing. J Acoust Soc Am 92:3132–3139.

    PubMed  CAS  Google Scholar 

  • Brown CH (1994) Sound localization. In: Fay RR, Popper AN (eds) Comparative Hearing: Mammals. New York: Springer-Verlag.

    Google Scholar 

  • Buell TN, Hafter ER (1991) Combination of interaural information across frequency bands. J Acoust Soc Am 90:1894–1900.

    PubMed  CAS  Google Scholar 

  • Buell TN, Trahiotis C, Bernstein LR (1991) Lateralization of low-frequency tones: relative potency of gating and ongoing interaural delays. J Acoust Soc Am 90:3077–3085.

    PubMed  CAS  Google Scholar 

  • Butler RA (1969) Monaural and binaural localization of noise bursts vertically in the median sagittal plane. J Aud Res 3:230–235.

    Google Scholar 

  • Caird D, Klinke R (1983) Processing of binaural stimuli by cat superior olivary complex neurons. Exp Brain Res 52:385–399.

    PubMed  CAS  Google Scholar 

  • Cant NB, Hyson RL (1992) Projections from the lateral nucleus of the trapezoid body to the medial superior olivary nucleus in the gerbil. Hear Res 58:26–34.

    PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory nerve fibers in cat. J Acoust Soc Am 93:401–417.

    PubMed  CAS  Google Scholar 

  • Carney LH, Yin TCT (1989) Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks: excitatory and inhibitory components. J Neurophysiol (Bethesda) 62:144–161.

    CAS  Google Scholar 

  • Carr CE, Konishi M (1988) Axonal delay lines for time measurement in the owl’s brainstem. Proc natl Acad Sci USA 85:8311–8315.

    PubMed  CAS  Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brainstem of the barn owl. J Neurosci 10:3227–3246.

    PubMed  CAS  Google Scholar 

  • Cherry EC (1961) Two ears—but one world. In: Rosenblith WA (ed) Sensory Communication. Cambridge: MIT Press, pp. 99–117.

    Google Scholar 

  • Clifton RK (1987) Breakdown of echo suppression in the precedence effect. J Acoust Soc Am 82:1834–1835.

    PubMed  CAS  Google Scholar 

  • Clifton RK, Freyman R (1989) Effect of click rate and delay and breakdown of the precedence effect. Percept Psychophys 46:139–145.

    PubMed  CAS  Google Scholar 

  • Colburn HS (1969) Some Physiological Limitations on Binaural Performance. Ph.D. dissertation, Massachetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470.

    PubMed  CAS  Google Scholar 

  • Colburn HS (1977) Theory of binaural interaction based on auditory-nerve data. II. Detection of tones in noise. J Acoust Soc Am 61:525–533.

    PubMed  CAS  Google Scholar 

  • Colburn HS, Durlach NI (1978) Models of binaural interaction. In: Carterette EC, Friedman M (eds) Handbook of Perception, Vol. IV. New York: Academic Press, pp. 467–518.

    Google Scholar 

  • Colburn HS, Ibrahim H (1993) Modeling of precedence-effect behavior in single neurons and in human listeners. J Acoust Soc Am 93:2293.

    Google Scholar 

  • Colburn HS, Isabelle SK (1992) Models of binaural processing based on neural patterns in the medial superior olive. In: Cazals Y, et al. (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 539–545.

    Google Scholar 

  • Colburn HS, Latimer JS (1978) Theory of binaural interaction based on auditory-nerve data. III. Joint dependence on interaural time and amplitude differences in discrimination and detection. J Acoust Soc Am 64:95–106.

    PubMed  CAS  Google Scholar 

  • Colburn HS, Moss PJ (1981) Binaural interaction models and mechanisms. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum Press, pp. 283–288.

    Google Scholar 

  • Colburn HS, Han Y, Culotta CP (1990) Coincidence model of MSO responses. Hear Res 49:335–346.

    PubMed  CAS  Google Scholar 

  • Cramer EM, Huggins WH (1958) Creation of pitch through binaural interaction. J Acoust Soc Am 30:413–417.

    Google Scholar 

  • Culotta CP (1988) Auditory Localization of Multiple Sound Sources. M.S. Thesis, Boston University, Boston, MA.

    Google Scholar 

  • Dabak A, Johnson DH (1992) Function-based modeling of binaural interactions: interaural phase. Hear Res 58:200–212.

    PubMed  CAS  Google Scholar 

  • Davenport W, Root W (1958) Random Signals and Noise. New York: Wiley.

    Google Scholar 

  • Davis JB (1985) Remote frequency masking: differential effects in binaural versus monaural detection. Senior project, Dept. of Biomedical Engineering, Boston University, Boston, MA.

    Google Scholar 

  • Davis MF (1980) Computer Simulation of Static Localization Cues. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Diranieh YM (1992) Computer-Based Neural Models of Single Lateral Superior Olivary Neurons. M.S. thesis, Boston University, Boston, MA.

    Google Scholar 

  • Domnitz RH, Colburn HS (1976) Analysis of binaural detection models for dependence on interaural target parameters. J Acoust Soc Am 59:598–601.

    PubMed  CAS  Google Scholar 

  • Domnitz R, Colburn HS (1977) Lateral position and interaural discrimination. J Acoust Soc Am 61:1586–1598.

    PubMed  CAS  Google Scholar 

  • Durlach NI (1960) Note on the equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 32:1075–1076.

    Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 35:1206–1218.

    Google Scholar 

  • Durlach NI (1972) Binaural signal detection: Equalization and cancellation theory. In: Tobias JV (ed) Foundations of Modern Auditory Theory, Vol. 2. New York: Academic Press, pp. 369–462.

    Google Scholar 

  • Durlach NI, Colburn HS (1978) Binaural phenomena. In: Carterette EC, Friedman M (eds) Handbook of Perception, Vol. IV. New York: Academic press, pp. 405–466.

    Google Scholar 

  • Durlach NI, Rigopoulos A, Pang XD, Woods WS, Kulkarni A, Colburn HS, Wenzel EM (1992) On the externalization of auditory images. Presence 1:251–257.

    Google Scholar 

  • Dye RH (1990) The combination of interaural information across frequencies: Lateralization on the basis of interaural delay. J Acoust Soc Am 88:2159–2170.

    PubMed  Google Scholar 

  • Ericson MA, McKinley RL (1992) Experiments involving auditory localization over headphones using synthesized cues. J Acoust Soc Am 92:2296.

    Google Scholar 

  • Florentine M (1976) Relation between lateralization and loudness in asymmetrical hearing loss. J Am Audiol Soc 1:243–251.

    PubMed  CAS  Google Scholar 

  • Foster S, Wenzel EM (1992) The Convolvotron: Real-time demonstration of reverberant virtual acoustic environments. J Acoust Soc Am 92:2376.

    Google Scholar 

  • Frijns JHM, Raatgever J, Bilsen FA (1986) A central spectrum theory of binaural processing. The binaural pitch revisited. J Acoust Soc Am 80:442–451.

    PubMed  CAS  Google Scholar 

  • Gabriel KJ (1983) Binaural Interaction in Impaired Listeners. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Gaik W (1993) Combined evaluation of interaural time and intensity differences: Psychoacoustic results and computer modeling. J Acoust Soc Am 94:98–110.

    PubMed  CAS  Google Scholar 

  • Gaumond RP, Molnar CE, Kim DO (1982) Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J Neurophysiol (Bethesda) 48:856–873.

    CAS  Google Scholar 

  • Gilkey RH, Robinson DE, Hanna TE (1985) Effects of masker waveform and signal-to-masker phase relation on diotic and dichotic masking by reproducible noise. J Acoust Soc Am 78:1207–1219.

    PubMed  CAS  Google Scholar 

  • Gilliom JD, Sorkin RD (1972) Discrimination of interaural time and intensity. J Acoust Soc Am 52:1635–1644.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: An anatomical and electrophysiological study. J Neurophysiol (Bethesda) 31:639–656.

    CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: Some physiological mechanisms of sound localization. J Neurophysiol (Bethesda) 32:613–636.

    CAS  Google Scholar 

  • Grantham DW (1982) Detectability of time-varying interaural correlation in narrow-band noise stimuli. J Acoust Soc Am 72:1178–1184.

    PubMed  CAS  Google Scholar 

  • Grantham DW (1984) Discrimination of dynamic interaural intensity differences. J Acoust Soc Am 76:71–76.

    PubMed  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1978) Detectability of varying interaural temporal differences. J Acoust Soc Am 63:511–523.

    PubMed  CAS  Google Scholar 

  • Grantham DW, Wightman FL (1979) Detectability of a pulsed tone in the presence of a masker with time-varying interaural correlation. J Acoust Soc Am 63:511–523.

    Google Scholar 

  • Grothe B, Sanes DH (1993) Inhibition influences time difference coding by MSO neurons—an in vitro study. Assoc Res Otolaryngol Abstr 16:108.

    Google Scholar 

  • Grün S, Aertsen A, Wagner H, Carr C (1990) Sound localization in the barn owl: A quantitative model of binaural interaction in the nucleus laminaris. Soc Neurosci Abstr 16:870.

    Google Scholar 

  • Guinan JJ Jr, Guinan SS, Norris BE (1972) Single auditory units in the superior olivary complex. I. Responses to sounds and classifications based on physiological properties. Int J Neurosci 4:101–120.

    Google Scholar 

  • Guinan JJ Jr, Norris BE, Guinan SS (1972) Single auditory units in the superior olivary complex. II. Location of unit categories and tonotopic organization. Int J Neurosci 4:147–166.

    Google Scholar 

  • Hafter ER (1971) Quantitative evaluation of a lateralization model of masking-level differences. J Acoust Soc Am 50:1116–1122.

    Google Scholar 

  • Hafter ER, Carrier SC (1970) Masking-level differences obtained with a pulsed tonal masker. J Acoust Soc Am 47:1041–1047.

    PubMed  CAS  Google Scholar 

  • Hafter ER, Carrier SC (1972) Binaural interaction in low-frequency stimuli: The inability to trade time and intensity completely. J Acoust Soc Am 51:1852–1862.

    PubMed  CAS  Google Scholar 

  • Hafter ER, Buell TN, Richards VM (1988) Onset-coding in lateralization: Its form, site and function, In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 647–678.

    Google Scholar 

  • Hall JL II (1965) Binaural interaction in the accessory superior-olivary nucleus of the cat. J Acoust Soc Am 37:814–823.

    PubMed  Google Scholar 

  • Han Y, Colburn HS (1993) Point-neuron model for binaural interaction in MSO. Hear Res 68:115–130.

    PubMed  CAS  Google Scholar 

  • Hausler R, Colburn HS, Marr E (1983) Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests. Acta Otolaryngol Suppl 400:1–62.

    PubMed  CAS  Google Scholar 

  • Held R (1955) Shifts in binaural localization after prolonged exposures to atypical combinations of stimuli. Am J Psychol 68:526–548.

    PubMed  CAS  Google Scholar 

  • Henning GB (1983) Lateralization of low-frequency transients. Hear Res 9:153–172.

    PubMed  CAS  Google Scholar 

  • Houtsma AJM, Goldstein JL (1972) The central origin of the pitch of complex tones: evidence from musical interval recognition. J Acoust Soc Am 51:520–529.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 153–231.

    Google Scholar 

  • Isabelle SK, Colburn HS (1991) Detection of tones in reproducible narrowband noise. J Acoust Soc Am 89:352–359.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39.

    PubMed  CAS  Google Scholar 

  • Jeffress LA (1958) Medial geniculate body—a disavowal. J Acoust Soc Am 30:802–803.

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    PubMed  CAS  Google Scholar 

  • Johnson DH, Williams J (1992) Simulation of single LSO unit responses. Assoc Res Otolaryngol Abstr 15:28.

    Google Scholar 

  • Johnson DH, Dabak A, Tsuchitani C (1990) Function-based modeling of binaural interactions: Interaural level. Hear Res 49:301–320.

    PubMed  CAS  Google Scholar 

  • Johnson DH, Zertuche E, Peiton M (1991) Computer simulation of single LSO neurons. Assoc Res Otolaryngol Abstr 14:51.

    Google Scholar 

  • Johnson DH, Tsuchitani C, Linebarger DA, Johnson MJ (1986) Application of a point process model to responses of cat lateral superior olive units to ipsilateral tones. Hear Res 21:135–159.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1990) Time sensitivity of cells in the lateral superior olive (LSO) to monaural and binaural amplitude-modulated complexes. Assoc Res Otolaryngol Abstr 13:267–268.

    Google Scholar 

  • Klein MA, Hartmann WM (1981) Binaural edge pitch. J Acoust Soc Am 70:51–61.

    PubMed  CAS  Google Scholar 

  • Knudsen EI (1984) Synthesis of a neural map of auditory space in the owl. In: Edelman GM, Cowan WM, Gall WE (eds) Dynamic Aspects of Neocortical Function. New York: Wiley, pp. 375–396.

    Google Scholar 

  • Koehnke J, Durlach NI (1989) Range effects in the identification of lateral position. J Acoust Soc Am 86:1176–1178.

    PubMed  CAS  Google Scholar 

  • Konishi M, Takahashi TT, Wagner H, Sullivan WE, Carr CE (1988) Neurophysiological and anatomical substrates of sound localization in the owl. In: Edelman Gm, Gall WE, Cowan WM (eds) Auditory Functon: Neurobiological Bases of Hearing. New York: Wiley, pp. 721–746.

    Google Scholar 

  • Kuhn GF (1987) Physical acoustics and measurements pertaining to directional hearing, In: Yost WA, Gourevitch G (eds) Directional Hearing New York: Springer-Verlag, pp. 3–25.

    Google Scholar 

  • Kulkarni A, Woods WS, Colburn HS (1992) Binaural recordings from KEMAR in several acoustical environments. J Acoust Soc Am 92:2376.

    Google Scholar 

  • Kuwada S, Batra R (1991) Sensitivity to interaural time differences (ITDs) of neurons in the superior olivary complex (SOC) of the unanesthetized rabbit. Soc Neurosci Abstr 17:450.

    Google Scholar 

  • Kuwada S, Batra R, Stanford TR (1989) Monaural and binaural response properties of neurons in the inferior colliculus of the rabbit: Effects of sodium pentobarbital. J Neurophysiol (Bethesda) 61:269–282.

    CAS  Google Scholar 

  • Licklider JCR (1959) Three auditory theories. In: Koch ES (ed) Psychology: A Study of a Science. Study 1, Vol. 1. New York: McGraw-Hill, pp. 41–144.

    Google Scholar 

  • Lindemann W (1986a) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am 80:1608–1622.

    PubMed  CAS  Google Scholar 

  • Lindemann W (1986b) Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wave front. J Acoust Soc Am 80:1623–1630.

    PubMed  CAS  Google Scholar 

  • Litovsky RY, Yin TCT (1993) Single-unit responses to stimuli that mimic the precedence effect in the inferior colliculus of the cat. Assoc Res Otolaryngol Abstr 16:128.

    Google Scholar 

  • Lyon RF (1983) A computational model of binaural localization and separation. Proc International Conference on Acoustics, Speech and Signal Processing ICASSP’83 3:1148–1151.

    Google Scholar 

  • MacGregor RJ (1987) Neural and Brain Modeling. New York: Academic press.

    Google Scholar 

  • Makous JC, Middlebrooks JC (1990) Two-dimensional sound localization by human listeners. J Acoust Soc Am 87:2188–2200.

    PubMed  CAS  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880.

    PubMed  CAS  Google Scholar 

  • McFadden D, Pasanen EG (1976) Lateralization at high frequencies based on interaural time differences. J Acoust Soc Am 59:634–639.

    PubMed  CAS  Google Scholar 

  • McFadden D, Jeffress LA, Lakey JR (1972) Differences of interaural phase and level in detection and lateralization: 1000 and 2000Hz. J Acoust Soc Am 52:1197–1206.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt MJ (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Meddis R, Hewitt MJ, Shackleton TM (1990) Implementation details of a computational model of the inner hair-cell/auditory-nerve synapse. J Acoust Soc Am 87:1813–1818.

    Google Scholar 

  • Middlebrooks JC (1992) Narrow-band sound localization related to external ear acoustics. J Acoust Soc Am 92:2607–2624.

    PubMed  CAS  Google Scholar 

  • Middlebrooks JC, Green DM (1991) Sound localization by human listeners. Annu Rev Psychol 42:135–139.

    PubMed  CAS  Google Scholar 

  • Mills AW (1958) On the minimum audible angle. J Acoust Soc Am 30:237–246.

    Google Scholar 

  • Molnar CE, Pfeiffer RR (1968) Interpretation of spontaneous spike discharge patterns of neurons in the cochlear nucleus. Proc IEEE 56:993–1004.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1986) The role of frequency selectivity in the perception of loudness, pitch and time. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 251–308.

    Google Scholar 

  • Oppenheim AV, Schafer RW (1989) Discrete-Time Signal Processing. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Raatgever J (1980) On the Binaural Processing of Stimuli with Different Interaural Phase Relations. Doctoral dissertation, Technische Hogeschool, Delft, Netherlands.

    Google Scholar 

  • Raatgever J, Bilsen FA (1977) Lateralization and dichotic pitch as a result of spectral pattern recognition, In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 443–453.

    Google Scholar 

  • Raatgever J, Bilsen FA (1986) A central spectrum theory of binaural processing: evidence from dichotic pitch. J Acoust Soc Am 80:429–441.

    PubMed  CAS  Google Scholar 

  • Rakerd B, Hartmann WM (1985) Localization of sound in rooms. II: The effects of a single reflecting surface. J Acoust Soc Am 78:524–533.

    PubMed  CAS  Google Scholar 

  • Rakerd B, Hartmann WM (1986) Localization of sound in rooms. III: Onset and duration effects. J Acoust Soc Am 80:1695–1706.

    PubMed  CAS  Google Scholar 

  • Rayleigh, Lord (Strutt JW) (1907) On our perception of sound direction. Philos Mag 13:214–232.

    Google Scholar 

  • Reed MC, Blum JJ (1990) A model for the computation and encoding of azimuthal information by the lateral superior olive. J Acoust Soc Am 88:1442–1453.

    PubMed  CAS  Google Scholar 

  • Ruotolo BR, Stern RM Jr, Colburn HS (1979) Discrimination of symmetric time-intensity traded binaural stimuli. J Acoust Soc Am 66:1733–1737.

    PubMed  CAS  Google Scholar 

  • Rupert A, Moushegian G, Whitcomb MA (1966) Superior-olivary response patterns to monaural and binaural clicks. J Acoust Soc Am 39:1069–1076.

    PubMed  CAS  Google Scholar 

  • Sayers BM (1964) Acoustic-image lateralization judgements with binaural tones. J Acoust Soc Am 366:923–926.

    Google Scholar 

  • Sayers BM, Cherry EC (1957) Mechanism of binaural fusion in the hearing of speech. J Acoust Soc Am 29:973–987.

    Google Scholar 

  • Schneider B, Zurek PM (1989) Lateralization of coherent and incoherent targets added to a diotic background. J Acoust Soc Am 86:1756–1763.

    PubMed  CAS  Google Scholar 

  • Schroeder MR (1977) New viewpoints in binaural interactions. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. New York: Academic Press, pp. 455–467.

    Google Scholar 

  • Schwartz IR (1992) The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 117–167.

    Google Scholar 

  • Searle CL, Braida LD, Davis MF, Colburn HS (1976) Model for auditory localization. J Acoust Soc Am 60:1164–1175.

    PubMed  CAS  Google Scholar 

  • Shackleton TM, Bowsher JM, Meddis R (1991) Lateralization of very-short duration tone pulses of low and high frequencies. Q J Exp Psychol 43(A):503–516.

    CAS  Google Scholar 

  • Shackleton TM, Meddis R, Hewitt MJ (1992) Across frequency integration in a model of lateralizaton. J Acoust Soc Am 91:2276–2279.

    Google Scholar 

  • Shamma SA (1985) Speech processing in the auditory system. I: The representation of speech sounds in the responses of the auditory nerve. J Acoust Soc Am 78:1612–1621.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Shen N, Gopalaswamy P (1989) Stereausisi: Binaural processing without neural delays. J Acoust Soc Am 86:989–1006.

    PubMed  CAS  Google Scholar 

  • Shamma SA, Chadwick RS, Wilbur WJ, Morrish KA, Rinzel J (1986) A biophysical model of cochlear pressing: Intensity dependence of pure tone reponses. J Acoust Soc Am 80:133–145.

    PubMed  CAS  Google Scholar 

  • Shinn-Cunningham BG, Zurek PM, Durlach NI (1993) Adjustment and discrimination measurements of the precedence effect. J Acoust Soc Am 93:2923–2932.

    PubMed  CAS  Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: Place or periodicity mechanisms? Proc IEEE 58:723–730.

    Google Scholar 

  • Smith PH, Banks MI (1992) Intracellular recordings from neurobiotin-labeled principal cells in brain slices of the guinea pig MSO. Soc Neurosci Abstr 18:382.

    Google Scholar 

  • Smith PH, Joris PX, Yin TCT (1993) Projections of physiologically characterized spherical bushy cell axons from the cochlear nucleus of the cat: Evidence for delay lines to the medial superior olive. J Comp Neurol 331:245–260.

    PubMed  CAS  Google Scholar 

  • Snyder D, Miller M (1991) Random Point Processes in Time and Space, 2nd Ed. New York: Springer-Verlag.

    Google Scholar 

  • Stern RM Jr, Colburn HS (1978) Theory of binaural interaction based on auditory-nerve data. IV. A model for subjective lateral positon. J Acoust Soc Am 64:127–140.

    PubMed  Google Scholar 

  • Stern RM Jr, Colburn HS (1985) Lateral position-based models of interaural discrimination. J Acoust Soc Am 77:753–755.

    PubMed  Google Scholar 

  • Stern RM Jr, Trahiotis C (1992) The role of consistency of interaural timing over frequency in binaural lateralization. In: Cazals Y, et al. (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 547–554.

    Google Scholar 

  • Stern RM Jr, Zeiberg AS, Trahiotis C (1988) Lateralizaiton of complex binaural sitmuli: a weighted image model. J Acoust Soc Am 84:156–165.

    PubMed  CAS  Google Scholar 

  • Stern RM Jr, Zeppenfeld T, Shear GD (1991) Lateralization of rectangularly-modulated noise: explanatons for counterintuitive reversals. J Acoust Soc Am 90:1908–1917.

    PubMed  CAS  Google Scholar 

  • Stutman E, Carney LH (1993) A model for temporal sensitivity of cells in the auditory brainstem: the role of a slow, low-threshold potassium conductance. Assoc Res Otolaryngol Abstr 16:121.

    Google Scholar 

  • Sujaku Y, Kuwada S, Yin YCT (1981) Binaural interaction in the cat inferior colliulus: Comparison of the physiological data with a computer simulated model, In: Syka J (ed) Neuronal Mechanisms of Hearing. New York: Plenum Press, pp. 233–238.

    Google Scholar 

  • Sulivan WE, Konishi M (1984) Segregation of stimulus phase and intensity coding in the cochlear nucleus of the barn owl. J Neurosci 4:1787–1799.

    Google Scholar 

  • Sullivan WE, Konishi M (1986) Neural map of interaural phase difference in the owl’s brainstem. Proc Natl Acad Sci USA 83:8400–8404.

    PubMed  CAS  Google Scholar 

  • Trahiotis C, Bernstein LR (1986) Lateralization of bands of noise and sinusoidally amplitude-modulated tones: Effects of spectral locus and bandwidth. J Acoust Soc Am 79:1950–1957.

    PubMed  CAS  Google Scholar 

  • Trahiotis C, Bernstein LR (1990) Detectability of interaural delays over select spectral regions: Effects of flanking noise. J Acoust Soc Am 87:810–813.

    PubMed  CAS  Google Scholar 

  • Trahiotis C, Stern RM Jr (1989). Lateralizaiton of bands of noise: Effects of bandwidth and differences of interaural time and phase. J Acoust Soc Am 86:1285–1293.

    PubMed  CAS  Google Scholar 

  • Trahiotis C, Stern RM Jr (1994) Across-frequency interaction in lateralization of complex binaural stimuli. J Acoust Soc Am 96:3804–3806.

    PubMed  CAS  Google Scholar 

  • von Békésy G (1930) Zur Theorie des Hörens. Physik Z 31:857–868. [Translation in Wever EG (ed) Experiments in Hearing. New York: McGraw-Hill.]

    Google Scholar 

  • Webster FA (1951) The influence of interaural phase on masked thresholds I. The role of interaural time deviation. J Acoust Soc Am 23:452–462.

    Google Scholar 

  • Wenzel EM (1992) Localization in virtual acoustic displays. Presence 1:80–107.

    Google Scholar 

  • Wenzel EM, Arruda MA, Kistler DJ, Wightman FL (1993) Localizaiton using non-individualized head-related transfer functions. J Acoust Soc Am 94:111–123.

    PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1989) Headphone simulation of freefield listening. II: Stimulus synthesis. J Acoust Soc Am 85:858–878

    PubMed  CAS  Google Scholar 

  • Wightman FL, Kistler DJ (1993) Sound localization, In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer-Verlag.

    Google Scholar 

  • Woods WS, Colburn HS (1992) Test of a model of auditory object formation using intensity and ITD discrimination. J Acoust Soc Am 91:2894–2902.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in the medial superior olive of the cat. J Neurophysiol (Bethesda) 64:465–488.

    CAS  Google Scholar 

  • Yin TCT, Kuwada S (1983) Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase. J Neurophysiol (Bethesda) 50:1020–1042.

    CAS  Google Scholar 

  • Yin TCT, Litovsky RY (1993) Physiological correlates of the precedence effect: Implications for neural models. J Acoust Soc Am 93:2293.

    Google Scholar 

  • Yost WA (1972) Tone-on-tone masking for three binaural listening conditions. J Acoust Soc Am 52:1234–1237.

    PubMed  CAS  Google Scholar 

  • Yost WA (1981) Lateral position of sinusoids presented with interaural intensive and temporal differences J Acoust Soc Am 70:397–409.

    Google Scholar 

  • Yost WA, Harder PJ, Dye RH (1987) Complex spectral patterns with interaural differences: dichotic pitch and the ‘central spectrum’. In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale: Erlbaum, pp. 190–201.

    Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378.

    PubMed  CAS  Google Scholar 

  • Zacksenhouse M, Johnson DH, Tsuchitani C (1992) Excitatory/inhibitory interaction in an auditory nucleus revealed by point process modeling. Hear Res 62:105–123.

    PubMed  CAS  Google Scholar 

  • Zurek PM (1980) The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am 67:952–964.

    Google Scholar 

  • Zurek PM (1985) Spectral dominance in sensitivity to interaural delay for broadband stimuli. J Acoust Soc Am 78:S121.

    Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 85–105.

    Google Scholar 

  • Zurek PM (1991) Probability distributions of interaural phase and level differences in binaural detection stimuli. J Acoust Soc Am 90:1927–1932.

    PubMed  CAS  Google Scholar 

  • Zurek PM (1993) A note on onset effects in binaural hearing. J Acoust Soc Am 93:1200–1201.

    PubMed  CAS  Google Scholar 

  • Zurek PM, Durlach NI (1987) Masker bandwidth dependence in homophasic and antiphasic tone detection. J Acoust Soc Am 81:459–464.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Colburn, H.S. (1996). Computational Models of Binaural Processing. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics