Skip to main content

Physiological Models for Basic Auditory Percepts

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

Explaining auditory perceptual phenomena in terms of physiological mechanisms has a long tradition going back at least to von Helmholtz (1863), and possibly to as early as Pythagoras’ experiments on pitch and musical consonance (ca. 530 B.C.; see Cohen and Drabken 1948). In modern practice, such efforts take the form of computational models because these models help generate hypotheses that can be explicitly stated and quantitatively tested for complex systems. Relating physiology to behavior is perhaps the most direct route toward understanding how the auditory system works, because neither physiological nor perceptual data alone provide sufficient information: physiological studies cannot identify the function of the neural structures under investigation, while perceptual studies do not reveal the implementation of these functions. This endeavor is not only an intellectual challenge (Schouten’s “ever wondering mind”), it can also have practical value. Perceptual impairments such as difficulties in understanding speech may only yield to surgical and pharmacological cures if the problem is sufficiently well identified at the physiological level. Because any behavior such as speech perception involves a complex physiological system with many interacting components, it becomes essential to identify the roles of these various components in the behavior.

On the zigzagging road towards wisdom about the human auditory system we collect knowledge from two entirely different sources of experimental information. First from anatomy and physiology... Second, from perception and psychoac-oustics... Our ever wondering mind tries to combine and explain these findings in terms of some model, law, hypothesis or theory.

J.F. Schouten (1970)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown MC (1994) Antidromic responses of single-units from the spiral ganglion. J Neurophysiol 71:1835–1847.

    PubMed  CAS  Google Scholar 

  • Brown MC, Smith DI, Nuttall AL (1981) The temperature dependency of neural and hair-cell responses evoked by high-frequencies. J Acoust Soc Am 73:1662–1670.

    Google Scholar 

  • Buus S (1990) Level discrimination of frozen and random noise. J Acoust Soc Am 87:2643–2654.

    PubMed  CAS  Google Scholar 

  • Buus S, Florentine M (1992) Possible relation of auditory-nerve adaptation to slow improvement in level discrimination with increasing duration. In: Cazals Y, Horner K, Demany L (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 279–288.

    Google Scholar 

  • Carlson R, Granström B, Klatt DH (1979) Vowel perception: the relative perceptual salience of selected spectral and waveform manipulations. R Inst Technol Stockholm STL-QPSR3-4:84–104.

    Google Scholar 

  • Carney LH (1990) Sensitivities of cells in the anteroventral cochlear nucleus of cat to spatiotemporal discharge patterns across primary afferents. J Neurophysiol (Bethesda) 64:437–456.

    CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401–417.

    PubMed  CAS  Google Scholar 

  • Carney LH (1994) Spatiotemporal encoding of sound level: models for normal encoding and recruitment of loudness. Hear Res 76:31–44.

    PubMed  CAS  Google Scholar 

  • Carney LH, Geisler CD (1986) A temporal analysis of auditory-nerve fiber responses to spoken stop consonant-vowel syllables. J Acoust Soc Am 79:1896–1914.

    PubMed  CAS  Google Scholar 

  • Cohen MR, Drabken IE (1948) A Source Book in Greek Science. New York: McGraw-Hill.

    Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470.

    PubMed  CAS  Google Scholar 

  • Colburn HS (1981) Intensity perception: relation of intensity discrimination to auditory-nerve firing patterns. Internal Memorandum, Research Laboratory of Electronics Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Conley RA, Keilson SE (1994) Rate representation and discriminability of second formant frequencies of /ε/-like steady-state vowels in cat auditory nerve. Assoc Res Orolaryugol Abstr 17:100.

    Google Scholar 

  • Costalupes JA (1983) Temporal integration of pure tones in the cat. Hear Res 9:43–54.

    PubMed  CAS  Google Scholar 

  • Costalupes JA, Young ED, Gibson DJ (1984) Effect of continuous noise backgrounds on rate response of auditory-nerve fibers in cat. J Neurophysiol (Bethesda) 51:1326–1344.

    CAS  Google Scholar 

  • Dallos P, Harris D, Özdamer Ö, Ryan A (1978) Behavioral, compound action potential, and single-unit thresholds: relationships in normal and abnormal ears. J Acoust Soc Am 64:151–157.

    PubMed  CAS  Google Scholar 

  • De Boer E (1967) Correlation studies applied to the frequency resolution of the cochlea. J Aud Res 7:209–217.

    Google Scholar 

  • De Boer E, de Jongh HR (1978) On cochlear encoding: potentialities and limitations of the reverse correlation technique. J Acoust Soc Am 63:115–135.

    PubMed  Google Scholar 

  • Delgutte B (1984) Speech coding in the auditory nerve. II. Processing schemes for vowel-like sounds. J Acoust Soc Am 75:879–886.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1986) Analysis of French stop consonants using a model of the peripheral auditory system. In: Perkell JS, Klatt DH (eds) Invariance and Variability in Speech Processes. Hillsdale: Erlbaum, pp. 163–177.

    Google Scholar 

  • Delgutte B (1987) Peripheral auditory processing of speech information: implications from a physiological study of intensity discrimination. In: Schouten MEH (ed) The Psychophysics of Speech Perception. Dordrecht: Nijhoff, pp. 333–353.

    Google Scholar 

  • Delgutte B (1989) Physiological mechanisms of masking and intensity discrimination. In: Turner CW (ed) Interactions Between Neurophysiology and Psycho-acoustics. New York: Acoustical Society of America, pp. 81–101.

    Google Scholar 

  • Delgutte B (1990a) Two-tone rate suppression in auditory-nerve fibers: dependence on suppressor frequency and level. Hear Res 49:225–246.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1990b) Physiological mechanisms of psychophysical masking: observations from auditory-nerve fibers. J Acoust Soc Am 87:791–809.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1991) Power-law behavior of the discharge rates of auditory-nerve fibers at low sound levels. Assoc Res Otolaryngol Abstr 14:77.

    Google Scholar 

  • Delgutte B Neural encoding of speech. In: Hardcastle W, Laver J (eds) The Handbook of Phonetic Sciences. Oxford: Blackwell (in press).

    Google Scholar 

  • Delgutte B, Cariani PA (1992) Coding of the pitch of harmonic and inharmonic complex tones in the interspike intervals of auditory-nerve fibers. In: Schouten MEH (ed) The Processing of Speech. Berlin: Mouton-de Gruyter, pp. 37–45.

    Google Scholar 

  • Deng L, Geisler CD, Greenberg S (1988) A composite model of the auditory periphery for the processing of speech. J Phonet 16:109–123.

    Google Scholar 

  • Dynes SBC, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90.

    PubMed  CAS  Google Scholar 

  • Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22:622–630.

    Google Scholar 

  • Eggermont JJ (1993) Functional aspects of synchrony and correlation in the auditory nervous system. Concepts Neurosci 4:105–129.

    Google Scholar 

  • Elliott D, McGee TM (1965) Effects of cochlear lesions upon audiograms and intensity discrimination in cats. Ann Otol Rhinol Laryngol 74:386–408.

    PubMed  CAS  Google Scholar 

  • Elliott D, Stein L, Harrison M (1960) Determination of absolute intensity thresholds and frequency difference thresholds in cats. J Acoust Soc Am 32:380–384.

    Google Scholar 

  • Erell A (1988) Rate coding model for discrimination of simple tones in the presence of noise. J Acoust Soc Am 84:204–214.

    PubMed  CAS  Google Scholar 

  • Evans EF (1975) The cochlear nerve and cochlear nucleus. In: Keidel WD, Neff D (eds) Handbook of Sensory Physiology, Vol. V/2. Heidelberg: Springer, pp. 1–109.

    Google Scholar 

  • Evans EF (1981) The dynamic range problem: place and time coding at the level of the cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum Press, pp. 69–95.

    Google Scholar 

  • Evans EF, Wilson JP (1973) The frequency selectivity of the cochlea. In: Møller AR (ed) Basic Mechanisms in Hearing. London: Academic Press, pp. 519–554.

    Google Scholar 

  • Fay RR (1978) Coding of information in single auditory-nerve fibers of the goldfish. J Acoust Soc Am 63:136–146.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winneteka: Hill-Fay.

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–263.

    Google Scholar 

  • Fay RR, Commbs S (1983) Neural mechanisms in sound detection and temporal summation. Hear Res 10:69–92.

    PubMed  CAS  Google Scholar 

  • Fechner GT (1860) Elemente der Psychophysik. Leipzig: Breitkopf und Härtel.

    Google Scholar 

  • Fekete DM, Rouiller EM, Liberman MC, Ryugo DK (1982) The central projections of intracellularly labeled auditory-nerve fibers in cats. J Comp Neurol 229:432–450.

    Google Scholar 

  • Flanagan JL (1955) Difference limen for vowel formant frequency. J Acoust Soc Am 27:613–617.

    Google Scholar 

  • Flanagan JL (1972) Speech Analysis, Synthesis and Perception. New York: Springer-Verlag.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Google Scholar 

  • Fletcher H, Munson WA (1933) Loudness, its definition, measurement, and calculation. J Acoust Soc Am 5:82–108.

    Google Scholar 

  • Fletcher H, Munson WA (1937) Relation between loudness and masking. J Acoust Soc Am 9:1–10.

    Google Scholar 

  • Fletcher H, Steinberg JC (1924) The dependence of the loudness of a complex sound upon the energy in the various frequency regions of the sound. Phys Rev 24:306–317.

    Google Scholar 

  • Florentine M, Buus S (1981) An excitation pattern model for intensity discrimination. J Acoust Soc Am 70:1646 1654.

    Google Scholar 

  • Florentine M, Buus S, Mason CR (1987) Level discrimination as a function of level from 0.25 to 16 kHz. J Acoust Soc Am 81:1528–1541.

    PubMed  CAS  Google Scholar 

  • Gaumond RP, Molnar CE, Kim DO (1982) Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability. J Neurophysiol (Bethesda) 48:856–873.

    CAS  Google Scholar 

  • Gcisler CD (1985) Effect of a compressive nonlinearity in a cochlear model. J Acoust Soc Am 78:257–260.

    Google Scholar 

  • Geisler CD (1992) Two-tone suppression by a saturating feedback model of the cochlear partition. Hear Res 63:203–211.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Deng L, Greenberg SR (1985) Thresholds for primary auditory fibers using statistically defined criteria. J Acoust Soc Am 77:1102–1109.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256.

    PubMed  CAS  Google Scholar 

  • Gerstein GL, Kiang NYS (1960) An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys J 1:15–28.

    PubMed  CAS  Google Scholar 

  • Gifford ML, Guinan JJ Jr (1983) Effects of crossed-olivocochlear-bundle stimulation on cat auditory-nerve fiber responses to tones. J Acoust Soc Am 74:115–123.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    PubMed  CAS  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural regions of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol (Bethesda) 32:613–636.

    CAS  Google Scholar 

  • Goldstein JL (1973) An optimum processor theory for the central formation of the pitch of complex tones. J Acoust Soc Am 54:1496–1516.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1974) Is the power law simply related to the driven spike response rate from the whole auditory nerve. In: Moskowitz HR, Scharf B, Stevens SS (eds) Sensation and Measurement. Dordrecht: Reidel, pp. 223–229.

    Google Scholar 

  • Goldstein JL (1980) On the signal processing potential of high-threshold auditory-nerve fibers. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft: Delft University, pp. 293–299.

    Google Scholar 

  • Goldstein JL (1990) Modeling rapid waveform compression in the basilar membrane as multiple-bandpass nonlinearity filtering. Hear Res 49:39–60.

    PubMed  CAS  Google Scholar 

  • Goldstein JL, Kiang NYS (1968) Neural correlates of the aural combination tone 2f1-f2. Proc IEEE 56:981–992.

    Google Scholar 

  • Goldstein JL, Srulovicz P (1977) Auditory-nerve spike intervals as an adequate basis for aural spectrum analysis. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 337–345.

    Google Scholar 

  • Goodman DA, Smith RL, Chamberlain SC (1982) Intracellular and extracellular responses in the organ of Corti in the gerbil. Hear Res 7:161–179.

    PubMed  CAS  Google Scholar 

  • Gray PF (1967) Conditional probability analyses of the spike activity of single neurons. Biophys J 7:759–777.

    PubMed  CAS  Google Scholar 

  • Green DM (1958) Detection of multiple component signals in noise. J Acoust Soc Am 30:904–911.

    Google Scholar 

  • Green DM (1960) Auditory detection of a noise signal. J Acoust Soc Am 32:121–131.

    Google Scholar 

  • Green DM, Swets JA (1966) Signal Detection Theory and Psychophysics. New York: Wiley.

    Google Scholar 

  • Greenberg SR, Geisler CD, Deng L (1986) Frequency selectivity of single cochlear nerve fibers based on the temporal response pattern of two-tone signals. J Acoust Soc Am 79:1010–1019.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Google Scholar 

  • Greenwood DD (1971) Aural combination tones and auditory masking. J Acoust Soc Am 50:502–543.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1986) What is “synchrony suppression”? J Acoust Soc Am 79:1857–1872.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    PubMed  CAS  Google Scholar 

  • Guinan JJ Jr, Gifford ML (1988) Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory nerve fibers. III. Tuning curves and thresholds at CF. Hear Res 37:29–46.

    PubMed  Google Scholar 

  • Hall JL (1977) Two-tone suppression in a nonlinear model of the basilar membrane. J Acoust Soc Am 61:802–810.

    PubMed  CAS  Google Scholar 

  • Harris DM, Dallos P (1979) Forward masking of auditory-nerve fiber responses. J Neurophysiol (Bethesda) 42:1083–1107.

    CAS  Google Scholar 

  • Heil P, Rajan R, Irvine DRF (1994) Topographic representation of tone intensity along the isofrequency axis of cat primary auditory cortex. Hear Res 76:188–202.

    PubMed  CAS  Google Scholar 

  • Hellman RP (1974) Effect of spread of excitation on the loudness function at 250 Hz. In: Moskowitz HR, Scharf B, Stevens SS (eds) Sensation and Measurement. Dordrecht: Reidel, pp. 241–249.

    Google Scholar 

  • Hellman RP (1978) Dependence of loudness growth on skirts of excitation patterns. J Acoust Soc Am 63:1114–1119.

    PubMed  CAS  Google Scholar 

  • Hienz RD, Sachs MB, Aleszczyk C (1993) Frequency discrimination in noise: comparison of cat performances with auditory-nerve models. J Acoust Soc Am 93:462–469.

    PubMed  CAS  Google Scholar 

  • Hirahara T, Komakine T (1989) A computational cochlear nonlinear preprocessing model with adaptive Q circuits. Proc International Conference on Audio, Speech and Signal Processing 37:496–499.

    Google Scholar 

  • Horst JW, Javel E, Farley GR (1986) Coding of spectral fine structure in the auditory nerve. I. Fourier analysis of period and interspike interval histograms. J Acoust Soc Am 79:398–416.

    PubMed  CAS  Google Scholar 

  • Houtgast T (1974) Lateral Suppression in Hearing. Amsterdam: Academische Pers.

    Google Scholar 

  • Houtsma AJM, Durlach NI, Braida LD (1980) Intensity perception. XI. Experimental results on the relation of intensity perception to loudness matching. J Acoust Soc Am 68:807–813.

    PubMed  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci USA 76:2407–2411.

    Google Scholar 

  • Irvine DRF (1992) Physiology of the auditory brainstem. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 153–231.

    Google Scholar 

  • Javel E (1980) Coding of AM tones in the chinchilla auditory nerve: implications for the pitch of complex tones. J Acoust Soc Am 68:133–146.

    PubMed  CAS  Google Scholar 

  • Javel E, Mott JB (1988) Physiological and psychophysical correlates of temporal processes in hearing. Hear Res 34:275–294.

    PubMed  CAS  Google Scholar 

  • Javel E, Geisler CD, Ravindran A (1978) Two-tone suppression in auditory nerve of the cat: rate-intensity and temporal analyses. J Acoust Soc Am 63:1093–1104.

    PubMed  CAS  Google Scholar 

  • Javel E, Mott JB, Rush NL, Smith DW (1988) Frequency discrimination: evaluation of rate and temporal codes. In: Duifhuis H, Horst JW, Wit HP (eds) Basic Issues in Hearing. London: Academic Press, pp. 224–234.

    Google Scholar 

  • Javel E, Tong YC, Shepherd RK, Clark GM (1987) Response of cat auditory-nerve fibers to biphasic electrical current pulses. Ann Otol Rhinol Laryngol 96(Suppl 128):26–30.

    Google Scholar 

  • Jeng PS (1992) Loudness predictions using a physiologically-based auditory model. Doctoral dissertation, City University of New York, New York.

    Google Scholar 

  • Jesteadt W, Wier CC, Green DM (1977) Intensity discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:160–177.

    Google Scholar 

  • Johnson DH (1974) The Response of Single Auditory-Nerve Fibers in the Cat to Single Tones: Synchrony and Average Discharge Rate. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Johnson DH (1978) The relationship of post-stimulus time and interval histograms to the timing characteristics of spike trains. Biophys J 22:412–430.

    Google Scholar 

  • Johnson DH (1980) The relationship between spike rate and synchrony in responses auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122.

    PubMed  CAS  Google Scholar 

  • Johnson DH, Kiang NYS (1976) Analysis of discharges recorded simultaneously from pairs of auditory-nerve fibers. Biophys J 16:719–734.

    PubMed  CAS  Google Scholar 

  • Johnson DH, Swami A (1983) The transmission of signals by auditory-nerve fiber discharge patterns. J Acoust Soc Am 74:493–501.

    PubMed  CAS  Google Scholar 

  • Johnson JH, Turner CW, Zwislocki JJ, Margolis RH (1993) Just noticeable differences for intensity and their relation to loudness. J Acoust Soc Am 93:983–991.

    PubMed  CAS  Google Scholar 

  • Joris PX, Yin TCT (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232.

    PubMed  CAS  Google Scholar 

  • Joris PX, Carney LH, Smith PH, Yin TCT (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Response to tones at the characteristics frequency. J Neurophysiol (Bethesda) 71:1022–1051.

    CAS  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol (Bethesda) 70:2533–2549.

    CAS  Google Scholar 

  • Kelly OE, Johnson DH, Delgutte B, Cariani P (1995) Fractal noise strength in auditory-nerve fiber recordings. J Acoust Soc Am (in press).

    Google Scholar 

  • Kewley-Port D, Watson CS (1994) Formant-frequency discrimination for isolated English vowels. J Acoust Soc Am 95:485–496.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Moxon EC (1974) Tails of tuning curves of auditory-nerve fibers. J Acoust Soc Am 55:620–630.

    PubMed  CAS  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge Patterns of Single Fibers in the Cat’s Auditory Nerve. Research Monograph #35. Cambridge: MIT Press.

    Google Scholar 

  • Kim DO (1986) A review of nonlinear and active cochlear models. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Berlin: Springer, pp. 239–247.

    Google Scholar 

  • Kim DO, Molnar CE, Pfeiffer RR (1973) A system of nonlinear differential equations modeling basilar membrane motion. J Acoust Soc Am 54:1517–1529.

    PubMed  CAS  Google Scholar 

  • Kim DO, Sirianni JG, Chang SO (1990) Responses of DCN-PVCN neurons and auditory-nerve fibers in unanesthetized decerebrate cats to AM and pure tones: analysis with autocorrelation/power spectrum. Hear Res 45:95–113.

    PubMed  CAS  Google Scholar 

  • Kumar AR, Johnson DH (1984) The applicability of stationary point process models to discharge patterns of single auditory-nerve fibers. Elec Comp Eng Tech Rep 84–09, Rice University, TX.

    Google Scholar 

  • Lachs G, Teich MC (1981) A neural counting model incorporating refractoriness and spread of excitation. II. Application to loudness estimation. J Acoust Soc Am 69:774–782.

    PubMed  CAS  Google Scholar 

  • Lachs G, Al-Shaikh R, Bi Q, Saia RA, Teich MC (1984) A neural counting model based on the physiological characteristics of the peripheral auditory system. V. Application to loudness estimation and intensity discrimination. IEEE Trans SMC-14:819–836.

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982a) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1982b) The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. J Acoust Soc Am 72:1441–1449.

    PubMed  CAS  Google Scholar 

  • Liberman MC (1991) Central projections of auditory-nerve fibers of differing spontaneous rates. I. Antero-ventral cochlear nucleus. J Comp Neurol 313: 240–258.

    PubMed  CAS  Google Scholar 

  • Liberman MC, Brown MC (1986) Physiology and anatomy of single olivocochlear neurons in the cat. Hear Res 24:17–36.

    PubMed  CAS  Google Scholar 

  • Licklider JCR (1951) The duplex theory of pitch perception. Experientia 7:128–137.

    PubMed  CAS  Google Scholar 

  • Loeb GE, White MW, Merzenich MM (1983) Spatial crosscorrelation: a proposed mechanism for acoustic pitch perception. Biol Cybern 47:149–163.

    PubMed  CAS  Google Scholar 

  • Lynch TJ III, Peake WT, Rosowski JJ (1994) Measurement of the acoustic input impedance of cat ears: 10 Hz to 20 kHz. J Acoust Soc Am 96:2184–2209.

    PubMed  Google Scholar 

  • Maiwald D (1967) Beziehung zwischen Schallspektrum, Mitthorschwelle und der Erregung des Gehors. Acustica 18:69–80.

    Google Scholar 

  • McGill WL, Goldberg JP (1968) Pure tone intensity discrimination and energy detection. J Acoust Soc Am 44:576–581.

    PubMed  CAS  Google Scholar 

  • McQuone SJ, May BJ (1993) Effects of olivocochlear efferent lesions on intensity discrimination in noise. Assoc Res Otolaryngol 16:51.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt MJ (1991) Virtual pitch and phase sensitivity of a computer model of the auditory periphery. J Acoust Soc Am 89:2866–2882.

    Google Scholar 

  • Miller GA (1947) Sensitivity to changes in the intensity of white noise and its relation to masking and loudness. J Acoust Soc Am 19:606–619.

    Google Scholar 

  • Miller MI, Mark KE (1992) A statistical study of cochlear nerve discharge patterns in response to complex speech stimuli. J Acoust Soc Am 92:202–209.

    PubMed  CAS  Google Scholar 

  • Miller MI, Sachs MB (1984) Representation of voiced pitch in the discharge patterns of auditory-nerve fibers. Hear Res 14:257–279.

    PubMed  CAS  Google Scholar 

  • Miller MI, Barta PE, Sachs MB (1987) Strategies for the representation of a tone in background noise in the temporal aspects of the discharge patterns of auditory-nerve fibers. J Acoust Soc Am 81:665–679.

    PubMed  CAS  Google Scholar 

  • Moore BCJ (1973) Frequency difference limens for short-duration tones. J Acoust Soc Am 54:610--619.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR (1983) Formulae describing frequency selectivity as a function of frequency and level, and their use in calculating excitation patterns. Hear Res 28:209–225.

    Google Scholar 

  • Moore BCJ, Glasberg BR (1986) The role of frequency selectivity in the perception of loudness, pitch and time. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 251–308.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Plack CJ, Biswas AK (1988) The shape of the ear’s temporal window. J Acoust Soc Am 83:1102–1116.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Raab DH (1975) Intensity discrimination for noise bursts in the presence of a continuous, bandstop background: effects of level, width of the bandstop, and duration. J Acoust Soc Am 57:400–405.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Evans EF (1982) Intensity coding in the auditory periphery of the cat: responses of cochlear nerve and cochlear nucleus neurons to signals in the presence of bandstop masking noise. Hear Res 7:305–323.

    PubMed  CAS  Google Scholar 

  • Palmer AR, Winter IM, Jiang G, James N (1995) Across-frequency integration by neurones in the ventral cochlear nucleus. In: Manley GA, Klump GM, Köppl C, Fasti H, Oeckinghous H (eds) Advances in Hearing Research. Singapore: World Scientific, pp 250–263.

    Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Holdsworth J (1995) A functional model of neural activity patterns and auditory images. In: Ainsworth WA (ed) Advances in Speech, Hearing and Language Processing. London: JAI (in press).

    Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 123–177.

    Google Scholar 

  • Penner MJ, Viemeister NF (1973) Intensity discrimination of clicks: the effects of click bandwidth and background noise. J Acoust Soc Am 54:1184–1188.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1979) Psychophysical frequency resolution in the cat as determined by simultaneous masking, and its relation to auditory-nerve resolution. J Acoust Soc Am 66:1725–1732.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1980) Psychophysical frequency resolution in the cat studied with forward masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological, and Behavioral Studies in Hearing. Delft: Delft University Press, pp. 118–125.

    Google Scholar 

  • Pickles JO (1983) Auditory-nerve correlates of loudness summation with stimulus bandwidth in normal and pathological cochleae. Hear Res 12:239–250.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1984) Frequency threshold curves and simultaneous masking functions in single fibres of the guinea pig auditory nerve. Hear Res 14:245–256.

    PubMed  CAS  Google Scholar 

  • Raab DH, Goldberg IA (1975) Auditory intensity discrimination with bursts of reproducible noise. J Acoust Soc Am 57:437–447.

    PubMed  CAS  Google Scholar 

  • Recio A, Viemeister NF, Powers L (1994) Detection thresholds based upon rate and synchrony. Assoc Res Otolaryngol Abstr 17:67.

    Google Scholar 

  • Relkin EM, Doucet JR (1991) Recovery from forward masking in the auditory nerve depends on spontaneous firing rate. Hear Res 55:215–222.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Peili DG (1987) Probe tone thresholds in the auditory nerve measured by a two-interval forced-choice procedure. J Acoust Soc Am 82:1679–1691.

    PubMed  CAS  Google Scholar 

  • Relkin EM, Turner CW (1988) A reexamination of forward masking in the auditory nerve. J Acoust Soc Am 84:584–591.

    PubMed  CAS  Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Rhode WS, Greenberg S (1992) Physiology of the cochlear nuclei. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 94–152.

    Google Scholar 

  • Rhode WS, Smith PH (1985) Characteristics of tone-pip response patterns in relationship to spontaneous rate in cat auditory nerve fibers. Hear Res 18: 159–168.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Geisler CD, Kennedy DK (1979) Auditory-nerve fiber responses to wide band noise and tone combinations. J Neurophysiol (Bethesda) 41:692–704.

    Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. I: Input-output functions, tuning curves and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory-nerve fibers of the squirrel monkey. J Neurophysiol (Bethesda) 30:769–793.

    CAS  Google Scholar 

  • Rose JE, Hind JE, Anderson DJ, Brugge JF (1971) Some effects of stimulus intensity on response of auditory-nerve fibers in the squirrel monkey. J Neurophysiol (Bethesda) 34:685–699.

    CAS  Google Scholar 

  • Rothman JS, Young ED, Manis PB (1993) Convergence of auditory-nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J Neurophysiol (Bethesda) 70:2562–2583.

    CAS  Google Scholar 

  • Ruggero M (1973) Response to noise of auditory-nerve fibers in the squirrel monkey. J Neurophysiol (Bethesda) 36:569–587.

    CAS  Google Scholar 

  • Ruggero M (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone suppression in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol (Bethesda) 68:1087–1099.

    CAS  Google Scholar 

  • Ryugo DK (1992) The auditory nerve: peripheral innervation, cell body morphology, and central projections. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 23–65.

    Google Scholar 

  • Sachs MB (1984) Speech encoding in the auditory nerve. In: Berlin C (ed) Hearing Science. San Diego: College Hill, pp. 263–308.

    Google Scholar 

  • Sachs MB, Abbas PJ (1974) Rate versus level functions for auditory-nerve fiber in cats: tone burst stimuli. J Acoust Soc Am 56:1835–1847.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Abbas PJ (1976) Phenomenological model for two-tone suppression. J Acoust Soc Am 60:1157–1163.

    Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory-nerve fibers. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the discharge patterns of auditory-nerve fibers: representation in terms of discharge rate. J Acoust Soc Am 66:1381–1403.

    PubMed  Google Scholar 

  • Sachs MB, Young ED (1980) Effects of nonlinearities on speech encoding in the auditory nerve. J Acoust Soc Am 68:858–875.

    PubMed  CAS  Google Scholar 

  • Schalk T, Sachs MB (1980) Nonlinearities in auditory-nerve fiber response to band limited noise. J Acoust Soc Am 67:903–913.

    PubMed  CAS  Google Scholar 

  • Scharf B, Magnan J, Collet L, Ulmer E, Chays A (1994) On the role of the olivocochlear bundle in hearing: a case study. Hear Res 75:11–26.

    PubMed  CAS  Google Scholar 

  • Schmiedt RA (1982) Boundaries of two-tone rate suppression of cochlear-nerve activity. Hear Res 7:335–351.

    PubMed  CAS  Google Scholar 

  • Schouten JF (1970) The residue revisited. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoh, pp. 41–58.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurements of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Seneff S (1988) A joint synchrony/mean-rate model of auditory speech processing. J Phonet 16:55–76.

    Google Scholar 

  • Shamma S (1985) Speech processing in the auditory system. II: Lateral inhibition and the central processing of speech evoked activity in the auditory nerve. J Acoust Soc Am 78:1622–1632.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1976) Two-tone unmasking and suppression in a forward-masking situation. J Acoust Soc Am 59:1460–1470.

    PubMed  CAS  Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hear Res 11:157–189.

    PubMed  CAS  Google Scholar 

  • Shannon RV, Otto SR (1990) Psychophysical measures from electrical stimulation of the human cochlear nucleus. Hear Res 47:159–168.

    PubMed  CAS  Google Scholar 

  • Shofner WP, Dye RH (1989) Statistical and receiver operating characteristic analysis of empirical spike-count distribution: quantifying the ability of cochlear nucleus units to signal intensity changes. J Acoust Soc Am 86:2172–2184.

    PubMed  CAS  Google Scholar 

  • Siebert WM (1965) Some implications of the stochastic behavior of auditory neurons. Kybernetik 2:206–215.

    PubMed  CAS  Google Scholar 

  • Siebert WM (1968) Stimulus transformations in the peripheral auditory system. In: Kollers PA, Eden M (eds) Recognizing Patterns. Cambridge: MIT Press, pp. 104–133.

    Google Scholar 

  • Siebert WM (1970) Frequency discrimination in the auditory system: place or periodicity mechanism. Proc IEEE 58:723–730.

    Google Scholar 

  • Siebert WM, Gray PR (1963) Random process model for the firing pattern of single auditory neurons. MIT Res Lab Electron Q Prog Rep 71:241–245.

    Google Scholar 

  • Sinex DG, Havey DC (1986) Neural mechanisms of tone-on-tone masking: patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in the chinchilla auditory nerve. J Neurophysiol (Bethesda) 56:1763–1780.

    CAS  Google Scholar 

  • Sinnott JM, Brown CH, Brown FE (1992) Frequency and intensity discrimination in Mongolian gerbils, African monkeys and humans. Hear Res 59:205–212.

    PubMed  CAS  Google Scholar 

  • Slaney M, Lyon RF (1993) On the importance of time—a temporal representation of sound. In: Cooke M, Beet S, Crawford M (eds) Visual Representations of Speech Signals. New York: Wiley, pp. 95–116.

    Google Scholar 

  • Smith RL (1977) Short-term adaptation in single auditory-nerve fibers: some poststimulatory effects. J Neurophysiol (Bethesda) 40:1098–1112.

    CAS  Google Scholar 

  • Smith RL (1979) Adaptation, saturation and physiological masking in single auditory-nerve fibers. J Acoust Soc Am 65:166–178.

    PubMed  CAS  Google Scholar 

  • Smith RL, Zwislocki JJ (1975) Short-term adaptation and incremental responses of single auditory-nerve fibers. Biol Cybern 17:169–182.

    PubMed  CAS  Google Scholar 

  • Smoorenburg GF (1970) Pitch perception for two-frequency stimuli. J Acoust Soc Am 48:924–942.

    PubMed  CAS  Google Scholar 

  • Solecki JM, Gerken GM (1990) Auditory temporal integration in the normal-hearing and hearing-impaired cat. J Acoust Soc Am 88:779–785.

    PubMed  CAS  Google Scholar 

  • Srulovicz P, Goldstein JL (1983) A central spectrum model: a synthesis of auditory nerve timing and place cues in monaural communication of frequency spectrum. J Acoust Soc Am 73:1266–1276.

    PubMed  CAS  Google Scholar 

  • Stevens SS (1956) The direct estimation of sensory magnitudes—loudness. Am J Psychol 69:1–25.

    PubMed  CAS  Google Scholar 

  • Stevens SS, Davis H (1938) Hearing: Its Psychology and Physiology. New York: Wiley.

    Google Scholar 

  • Tanner WP, Swets JA, Green DM (1956) Some general properties of the hearing mechanism. Univ Michigan Electron Defense Group Tech Rep 30.

    Google Scholar 

  • Tasaki I (1954) Nerve impulses in individual auditory-nerve fibers of guinea pig. J Neurophysiol (Bethesda) 17:97–122.

    CAS  Google Scholar 

  • Teich MC (1989) Fractal character of the auditory neural spike train. IEEE Trans BME-36:150–160.

    Google Scholar 

  • Teich MC, Khanna SM (1985) Pulse number distribution for the neural spike train in the cat’s auditory nerve. J Acoust Soc Am 77:1110–1128.

    PubMed  CAS  Google Scholar 

  • Teich MC, Lachs G (1979) A neural counting model incorporating refractoriness and spread of excitation. I. Application to intensity discrimination. J Acoust Soc Am 66:1738–1749.

    PubMed  CAS  Google Scholar 

  • Teich MC, Johnson DH, Kumar AR, Turcott RG (1990) Rate fluctuations and fractional power-law noise recorded from cells in the lower auditory pathway of the cat. Hear Res 40:41–52.

    Google Scholar 

  • Terhardt E (1974) Pitch, consonance, and harmony. J Acoust Soc Am 55: 1061–1069.

    PubMed  CAS  Google Scholar 

  • Townsend B, Cotter N, Van Compernolle D, White RL (1987) Pitch perception by cochlear implant patients. J Acoust Soc Am 82:106–115.

    Google Scholar 

  • Viemeister NF (1974) Intensity discrimination of noise in the presence of band-reject noise. J Acoust Soc Am 56:1594–1600.

    PubMed  CAS  Google Scholar 

  • Viemeister NF (1983) Auditory intensity discrimination at high frequencies in the presence of noise. Science 221:1206–1208.

    PubMed  CAS  Google Scholar 

  • Viemeister NF (1988) Psychophysical aspects of intensity discrimination, in: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: Wiley, pp. 213–241.

    Google Scholar 

  • Viemeister NF, Shivapuja BG, Recio A (1992) Physiological correlates of temporal integration. In: Cazals Y, Horner K, Demany L (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 322–329.

    Google Scholar 

  • Voigt HF, Young ED (1980) Evidence for inhibitory interactions between neurons in dorsal cochlear nucleus. J Neurophysiol (Bethesda) 44:76–96.

    CAS  Google Scholar 

  • von Békésy G (1929) Zur Theorie des Hörens: Über die eben merkbare Amplituden- und Frequenzänderung eines Tones; Die Theorie der Schwebungen. Z Phyzik 30:721–745.

    Google Scholar 

  • von Helmholtz HLF (1863) Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik. Braunschweig: Vieweg und Sohn.

    Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neuroanatomy. New York: Springer-Verlag, pp. 410–448.

    Google Scholar 

  • Warr WB, Guinan JJ Jr (1979) Efferent innervation of the organ of Corti: two separate systems. Brain Res 173:152–155.

    PubMed  CAS  Google Scholar 

  • Wakefield GH, Nelson DA (1985) Extension of a temporal model of frequency discrimination: intensity effects in normal and hearing-impaired listeners. J Acoust Soc Am 77:613–619.

    PubMed  CAS  Google Scholar 

  • Warren EH, Liberman MC (1989) Effects of contralateral sound on auditory-nerve responses. I. Contributions of cochlear efferents. Hear Res 37:89–104.

    PubMed  Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285.

    Google Scholar 

  • Weiss TF, Rose C (1988) Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard. Hear Res 33:167–174.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1984) Rapid and short-term adaptation in auditory-nerve responses. Hear Res 15:249–260.

    PubMed  CAS  Google Scholar 

  • Westerman LA, Smith RL (1988) A diffusion model of the transient response of the cochlear inner hair cell synapse. J Acoust Soc Am 83:2266–2276.

    PubMed  CAS  Google Scholar 

  • Wever EG (1949) Theory of Hearing. New York: Wiley.

    Google Scholar 

  • Whitfield IC (1967) The Auditory Pathway. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Wiederhold ML, Kiang NYS (1970) Effects of electrical stimulation of the crossed olivocochlear bundle on single auditory nerve fibers in cat. J Acoust Soc Am 48:950–965.

    PubMed  CAS  Google Scholar 

  • Wiener FM, Pfeiffer RR, Backus ASN (1966) On the sound pressure transformation by the head and auditory meatus of the cat. Acta Otolaryngol 61:255–269.

    PubMed  CAS  Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1977) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    PubMed  CAS  Google Scholar 

  • Winslow RL (1985) A quantitative analysis of rate coding in the auditory nerve. Doctoral dissertation, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol (Bethesda) 57:1002–1021.

    CAS  Google Scholar 

  • Winslow RL, Sachs MB (1988) Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle. Hear Res 35:165–190.

    PubMed  CAS  Google Scholar 

  • Winslow RL, Barta PE, Sachs MB (1987) Rate coding in the auditory nerve. In: Yost WA, Watson CS (eds) Auditory Processing of Complex Sounds. Hillsdale: Erlbaum, pp. 212–224.

    Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibers. Hear Res 45:191–202.

    PubMed  CAS  Google Scholar 

  • Yates GK, Robertson D, Johnstone BM (1985) Very rapid adaptation in the guinea pig auditory nerve. Hear Res 17:1–12.

    PubMed  CAS  Google Scholar 

  • Yates GK, Winter IM, Robertson D (1990) Basilar membrane nonlinearity determines auditory-nerve rate-intensity functions and cochlear dynamic range. Hear Res 45:203–220.

    PubMed  CAS  Google Scholar 

  • Yin TCT, Chan JCK (1990) Interaural time sensitivity in medial superior olive of cat. J Neurophysiol (Bethesda) 64:465–488.

    CAS  Google Scholar 

  • Young EG (1989) Problems and opportunities in extending psychophysical/physiological correlation into the central nervous system. In: Turner CW (ed) Interactions Between Neurophysiology and Psychoacoustics. New York: Acoustical Society of America, pp. 118–140.

    Google Scholar 

  • Young ED, Barta PE (1986) Rate responses of auditory nerve fibers to tone in noise near masked threshold. J Acoust Soc Am 79:426–442.

    PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1973) Recovery from sound exposure in auditory nerve fibers. J Acoust Soc Am 54:1535–1543.

    PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    PubMed  CAS  Google Scholar 

  • Young ED, Sachs MB (1989) Auditory-nerve fibers do not discharge independently when responding to broadband noise. Assoc Res Otolaryngol Abstr 12:121.

    Google Scholar 

  • Zhang W, Salvi RJ, Saunders SS (1990) Neural correlates of gap detection in auditory-nerve fibers of the chinchilla. Hear Res 46:181–200.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1956) Die elementatre Grudlagen zur Bestimmung der Informationskapazität des Gehörs. Acustica 6:365–381.

    Google Scholar 

  • Zwicker E (1970) Masking and psychological excitation as consequences of the ear’s frequency analysis. In: Plomp R, Smoorenburg GF (eds) Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoh, pp. 376–396.

    Google Scholar 

  • Zwicker E (1974) On a psychoacoustical equivalent of tuning curves. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing. Berlin: Springer-Verlag, pp. 132–141.

    Google Scholar 

  • Zwicker E (1986) Suppression and 2fl-f2 difference tones in a nonlinear cochlear preprocessing model. J Acoust Soc Am 80:163–176.

    PubMed  CAS  Google Scholar 

  • Zwicker E, Feldtkeller R (1967) Das Ohr als Nachrichtenempfänger. Stuttgart: Hirzel Verlag.

    Google Scholar 

  • Zwicker E, Scharf B (1965) A model of loudness summation. Psychol Rev 72:3–26.

    PubMed  CAS  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical band width in loudness summation. J Acoust Soc Am 29:548–557.

    Google Scholar 

  • Zwislocki JJ (1960) Theory of temporal auditory summation. J Acoust Soc Am 32:1046–1060.

    Google Scholar 

  • Zwislocki JJ (1969) Temporal summation of loudness: an analysis. J Acoust Soc Am 46:431–441.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Delgutte, B. (1996). Physiological Models for Basic Auditory Percepts. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics