Skip to main content

Analysis and Synthesis of Cochlear Mechanical Function Using Models

  • Chapter
Auditory Computation

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 6))

Abstract

This chapter begins with a brief review of cochlear anatomy and physiology (see also Echteler, Fay, and Popper 1994), and then progresses through the modeling of the cochlea. We relate anatomy and physiology to models, thus broadening the base of potentially interested readers. Most state-of-the-art cochlear models include an embodiment of outer hair cells that have been shown to change length in response to transmembrane voltage. This electromotility is hypothesized to underlie a process of mechanical amplification that increases the ability of mammals to detect faint sounds by a hundredfold. Chapter 4 (Mountain and Hubbard) of this volume further considers the biophysics of hair cell motility, while in this chapter, the ability of hair cells to provide a feedback force in response to the motion of their own stereocilia is considered to be the engine that underlies the most sensitive aspects of mammalian hearing. This work is not exhaustive, but instead attempts to cover in some detail those models that are either of significant historical interest or represent the current state of the art in cochlear modeling. We attempt to interpret the current significance of both data and models for the reader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas PJ, Sachs MB (1976) Two-tone suppression in auditory-nerve fibers: extension of a stimulus-response relationship. J Acoust Soc Am 59:112–122.

    PubMed  CAS  Google Scholar 

  • Aertsen AMJH, Johannesma PIM (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. I. Characterization of tonal and natural stimuli. Biol Cybern 38:223–234.

    Google Scholar 

  • Allen JB (1977) Two-dimensional cochlear fluid model: new results. J Acoust Soc Am 61:110–119.

    PubMed  CAS  Google Scholar 

  • Allen JB (1980) Cochlear micromechanics—a physical model of transduction. J Acoust Soc Am 68:1660–1679.

    PubMed  CAS  Google Scholar 

  • Allen JB, Fahey PF (1992) Using acoustic distortion products to measure the cochlear amplifier gain on the basilar membrane. J Acoust Soc Am 92(1): 178–188.

    PubMed  CAS  Google Scholar 

  • Allen JB, Fahey PF (1993) Distortion product emission as a probe of cochlear mechanical resonance. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 296–303.

    Google Scholar 

  • Allen JB, Fahey PF (1993) A second cochlear-frequency map that correlates distortion product and neural tuning measurements. J Acoust Soc Am 94(2):809–816.

    PubMed  CAS  Google Scholar 

  • Allen JB, Sondhi MM (1979) Cochlear macromechanics: time domain solutions. J Acoust Soc Am 66:123–132.

    PubMed  CAS  Google Scholar 

  • Askeland DR (1989) The Science and Engineering of Materials, 2nd Ed. Boston: PWS-KENT.

    Google Scholar 

  • Bialek WS, Wit HP (1984) Quantum limits to oscillator stability: theory and experiments on acoustic emissions from the human ear. Phys Lett 104A: 173–178.

    Google Scholar 

  • Brownell W, Bader C, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    PubMed  CAS  Google Scholar 

  • Brundin L, Flock Å, Khanna SM, Ulfendahl M (1991) Frequency-specific position shift in the guinea pig organ of Corti. Neurosci Lett 128:77–80.

    PubMed  CAS  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequeny auditory-nerve fibers in cat. J Acoust Soc Am 93(1):401–417.

    PubMed  CAS  Google Scholar 

  • Chadwick RS, Cole JD (1979) Modes and waves in the cochlea. Mech Res Commun 6:177–184.

    Google Scholar 

  • Cody AR (1992) Acoustic lesions in the mammalian cochlea: implications for the spatial distribution of the “active process”. Hear Res 62:166–172.

    PubMed  CAS  Google Scholar 

  • Cohen A, Furst M (1993) Cochlear model for rate suppression based on cochlear amplifiers dynamics. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 323–329.

    Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    PubMed  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    PubMed  CAS  Google Scholar 

  • de Boer E (1983a) No sharpening? A challenge for cochlear mechanics. J Acoust Soc Am 73:567–573.

    PubMed  Google Scholar 

  • de Boer E (1983b) On active and passive cochlear models—Towards a generalized analysis. J Acoust Soc Am 73:574–576.

    PubMed  Google Scholar 

  • de Boer E (1990a) Wave propagation modes and boundary conditions for the Ulfendahl-Flock-Khanna preparation. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 333–339.

    Google Scholar 

  • de Boer E (1990b) Can shape deformations of the organ of Corti influence the travelling wave in the cochlea? Hear Res 44:83–92.

    PubMed  Google Scholar 

  • de Boer E (1993) The sulcus connection. On a mode of participation of outer hair cells in cochlear mechanics. J Acoust Soc Am 93:2845–2859.

    PubMed  Google Scholar 

  • de Boer E, Kuyper P (1968) Triggered correlation. IEEE Trans Biomed Eng BME 15–3:169–179.

    Google Scholar 

  • Diependaal RJ, Viergever MA (1989) Nonlinear and active two-dimensional cochlear models: time-domain solution. J Acoust Soc Am 85:803–812.

    PubMed  CAS  Google Scholar 

  • Echteier SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative Hearing in Mammals. New York: Springer-Verlag, pp. 134–171.

    Google Scholar 

  • Engström H, Engström B (1978) Structure of hairs on cochlear sensory cells. Hear Res 1:49–66.

    PubMed  Google Scholar 

  • Fettweis A (1986) Wave digital filters: theory and practice. Proc IEEE 74:270–327.

    Google Scholar 

  • Friedman DH (1990) Implementation of a nonlinear wave-digital-filter cochlear model. In: Proceedings of the IEEE International Conference on Acoustics and Speech Signal Process, Albuquerque, NM, pp. 397–400.

    Google Scholar 

  • Furst M (1990) Nonlinear transmission line model can predict the statistical properties of spontaneous otoacoustic emission. IN: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 380–386.

    Google Scholar 

  • Furst M, Lapid M (1988) A cochlear model for acoustic emissions. J Acoust Soc Am 72:717–726.

    Google Scholar 

  • Furst M, Goldstein JL (1982) A cochlear nonlinear transmission-line model compatible with combination tone psychophysics. J Acoust Soc Am 72:717–726.

    PubMed  CAS  Google Scholar 

  • Furst M, Reshef (Haran) I, Attias J (1992) Manifestation of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. J Acoust Soc Am 91:1003–1014.

    PubMed  CAS  Google Scholar 

  • Galambos R, Davis H (1943) The response of single auditory-nerved fibers to acoustic stimulation. J Neurophysiol 6:39–57.

    Google Scholar 

  • Geisler CD (1986) A model of the effect of OHC motility on cochlear vibrations. Hear Res 18:125–131.

    Google Scholar 

  • Geisler CD (1991) A cochlear model using feedback from motile outer hair cells. Hear Res 54:105–117.

    PubMed  CAS  Google Scholar 

  • Geisler CD (1993) A realizable cochlear model using feedback from motile outer hair cells. Hear Res 68:253–262.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Hubbard AE (1972) New boundary conditions and results for the Peterson-Bogert model of the cochlea. J Acoust Soc Am 52:1629–1634.

    PubMed  CAS  Google Scholar 

  • Geisler CD, Hubbard AE (1975) The compatibility of various measurements on the ear as related by a simple model. Acustica 33:220–222.

    Google Scholar 

  • Geisler CD, Shan X (1990) A model for cochlear vibrations based on feedback from motile outer hair cells. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 85–95.

    Google Scholar 

  • Geisler CD, Bendre A, Liotopoulos FK (1993) Time-domain modeling of a nonlinear, active model of the cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 330–337.

    Google Scholar 

  • Ghitza O (1986) Auditory nerve representation as a front-end for speech recognition in a noisy environment. Comput Speech Lang 1:109–130.

    Google Scholar 

  • Giguere C, Woodland PC (1994) A computational model of the auditory periphery for speech and hearing research. I. Ascending path. J Acoust Soc Am 95: 331–342.

    PubMed  CAS  Google Scholar 

  • Goblick TJ, Pfeiffer RR (1969) Time-domain measurements of cochlear non-linearities using combination click stimuli. J Acoust Soc Am 46:924–938.

    PubMed  Google Scholar 

  • Gold T (1948) Hearing II. The physical basis of the action of the cochlea. Proc R Soc Lond Ser B 135:492–498.

    Google Scholar 

  • Goldstein JL (1990a) Mathematical analysis of a nonlinear model for hybrid filtering in the cochlea. In: Dallos P, Geisler CD, Matthews JW, Ruggero M, Steele CR (eds) Mechanics and Biophysics of Hearing. Berlin: Springer, pp. 387–394.

    Google Scholar 

  • Goldstein JL (1990b) Modeling rapid waveform compression on the basilar membrane as multiple-bandpass-nonlinearity filtering. Hear Res 49:39–60.

    PubMed  CAS  Google Scholar 

  • Goldstein JL (1991) Modeling the nonlinear cochlear mechanical basis of psychophysical tuning. J Acoust Soc Am 90(A):2267–2268.

    Google Scholar 

  • Goldstein JL (1992a) Identification of the cochlear mechanical response effective in hearing. In: Abstracts, Association for Research in Otolaryngology 15th Midwinter Meeting, St. Petersburg, FL, Feb. 2–6, 1992, p. 273.

    Google Scholar 

  • Goldstein JL (1992b) Changing roles in the cochlea: bandpass filtering by the organ of Corti and additive amplification on the basilar membrane. J Acoust Soc Am 92:s2407.

    Google Scholar 

  • Goldstein JL (1993) Exploring new principles of cochlear operation: bandpass filtering by the organ of Corti and additive amplification on the basilar membrane. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 315–322.

    Google Scholar 

  • Gonzales DA (1994) A traveling-wave amplifier model of the cochlea. Thesis, Boston University, Boston, MA.

    Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    PubMed  CAS  Google Scholar 

  • Hall JL (1974) Two tone distortion products in a nonlinear model of the basilar membrane. J Acoust Soc Am 56:1818–1828.

    PubMed  CAS  Google Scholar 

  • Hall JL (1977a) Two-tone suppression in a nonlinear model of the basilar membrane. J Acoust Soc Am 61:802–810.

    PubMed  CAS  Google Scholar 

  • Hall JL (1977b) Spatial differentiation as an auditory “second filter”: assessment on a nonlinear model of the basilar membrane. J Acoust Soc Am 61:520–524.

    PubMed  CAS  Google Scholar 

  • Henson MM, Burridge K, Fizpatrick D, Jenkins DB, Pillsbury HC, Henson OW (1985) Immunocytochemical localization of contractile and contraction associated proteins in the spiral ligament of the cochlea. Hear Res 20:207–214.

    PubMed  CAS  Google Scholar 

  • Hewitt MJ, Meddis R (1991) An evaluation of eight computer models of mammalian inner hair-cell function. J Acoust Soc Am 90:904–917.

    PubMed  CAS  Google Scholar 

  • Holdsworth J, Nimmo-Smith I, Patterson RD, Rice P (1988) Implementing a gammatone filter bank. SVOS Final Report: The Auditory Filterbank. Annex C Report 2341 MRC APU, Cambridge, MA.

    Google Scholar 

  • Holmes M (1980) An analysis of a low-frequency model of the cochlea. J Acoust Soc Am 68:482–488.

    PubMed  CAS  Google Scholar 

  • Howard J, Hudspeth AF (1988) Compliance of the hair bundle associated with gating of mechanoelectric transduction channels in the bullfrog’s saccular hair cell. Neuron 1:189–199.

    PubMed  CAS  Google Scholar 

  • Hubbard AE (1976) A digital simulation of cochlear hydrodynamics. Model Simul 7:1278–1281.

    Google Scholar 

  • Hubbard AE (1986) Cochlear emissions in a one-dimensional model of cochlear hydromechanics. Hear Res 21:74–81.

    Google Scholar 

  • Hubbard AE (1992) A traveling-wave amplifier model of the cochlea. In: Abstracts, 15th Association for Research in Otolaryngology Midwinter Meeting, St. Petersburg, FL, Feb. 2–6, 1992, p. 156

    Google Scholar 

  • Hubbard AE (1993) A traveling-wave amplifier model of the cochlea. Science 259:68–71.

    PubMed  CAS  Google Scholar 

  • Hubbard AE, Geisler CD (1972) A hybrid-computer model of the cochlear partition. J Acoust Soc Am 51:1895–1903.

    PubMed  CAS  Google Scholar 

  • Hubbard AE, Mountain DC (1983) Alternating current delivered into the scala media alters sound pressure at the eardrum. Science 22:510–512.

    Google Scholar 

  • Hubbard AE, Gonzales D, Mountain DC (1993) A nonlinear traveling-wave amplifier model of the cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 370–376.

    Google Scholar 

  • International Team for Ear Research (ITER) (1989) Cellular vibration and motility in the organ of Corti. Acta Otolaryngol Suppl 467.

    Google Scholar 

  • Johannesma PIM (1972) The pre-response stimulus ensemble of neurons in the cochlear nucleus. In: Proceedings of the Symposium on Hearing Theory. Eindhoven: IPO, pp. 58–69.

    Google Scholar 

  • Johannesma PIM (1980) Narrow band filters and active resonators. Comments on papers by D.T. Kemp & R.A. Chum, and H.P. Wit & R.J. Ritsma. In: van den Brink G, Bilson FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft: Delft University Press, pp. 62–63.

    Google Scholar 

  • Johnstone BM, Boyle AJ (1967) Basilar membrane vibration examined with the Mössbauer technique. Science 158:389–390.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Taylor KJ, Boyle AJ (1970) Mechanics of the guinea pig cochlea. J Acoust Soc Am 47:504–509.

    PubMed  CAS  Google Scholar 

  • Jones K, Tubis A, Long GR, Burns EM, Strickland EA (1986) Interactions among multiple spontaneous otoacoustic emissions. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Berlin: Springer, pp. 266–273.

    Google Scholar 

  • Kates JM (1991) A time-domain digital cochlear model. IEEE Trans Sig Proc 39:2573–2592.

    Google Scholar 

  • Kates JM (1993) Accurate tuning curves in a cochlear model. IEEE Trans Speech Aud Proc 1(4):453–462.

    Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Leonard DGB (1982) Basilar membrane tuning in the cat cochlea. Science 215:305–306.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Flock Å, Ulfendahl M (1989) Comparison of tuning of outer hair cells and the basilar membrane in the isolated cochlea. Acta Otolaryngol Suppl 467:151–156.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Ulfendahl M, Flock Å (1989) Waveforms and spectra of cellular vibrations in the organ of Corti. Acta Otolaryngol Suppl 467:189–193.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Ulfendahl M, Flock (1993) Level dependence of cellular responses in the guinea-pig cochlea. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 266–271.

    Google Scholar 

  • Kim DO (1986a) A review of nonlinear and active cochlear models. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Lecture Notes in Biomathematics, vol. 64, Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 239–247.

    Google Scholar 

  • Kim DO (1986b) Active and nonlinear biomechanics and the role of the outer-hair-cell subsystem in the mammalian auditory system. Hear Res 22:105–114.

    PubMed  CAS  Google Scholar 

  • Kim DO, Molnar CE, Pfeiffer RR (1973) A system of nonliner differential equations modeling basilar-membrane motion. J Acoust Soc Am 54:1517–1529.

    PubMed  CAS  Google Scholar 

  • Kolston PJ (1988) Sharp mechanical tuning in a micromechanical cochlear model. J Acoust Soc Am 83:1481–1486.

    PubMed  CAS  Google Scholar 

  • Kolston PJ, Smoorenburg GF (1990) Does the cochlear amplifier produce reactive or resistive forces? In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 96–105.

    Google Scholar 

  • Kolston PJ, Viergever MA (1989) Realistic basilar membrane tuning does not require active processes. In: Wilson JP, Kemp DT (eds) Cochlear Mechanisms—Structure, Function and Models. London: Plenum Press, pp. 415–424.

    Google Scholar 

  • Kolston PJ, Viergever MA, de Boer E, Diependaal RJ (1989) Realistic mechanical tuning in a micromechanical cochlear model. J Acoust Soc Am 86:133–140.

    PubMed  CAS  Google Scholar 

  • Kolston PJ, Viergever MA, de Boer E, Smoorenburg GF (1990) What type of force does the cochlear amplifier produce? J Acoust Soc Am 88:1794–1801.

    PubMed  CAS  Google Scholar 

  • Kronester-Frei A (1979) Localization of the marginal zone of the tectorial membrane in situ, unfixed and in vivo-like ionic milieu. Arch Otorhinolaryngol 224:3–9.

    PubMed  CAS  Google Scholar 

  • Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D (1993) Silicon auditory processors as computer peripherals. IEEE Trans Neural Networks 4:523–528.

    CAS  Google Scholar 

  • LePage EL (1987) Frequency-dependent self-induced bias of the basilar membrane and its potential for controlling sensitivity and tuning in the mammalian cochlea. J Acoust Soc Am 82:139–154.

    PubMed  CAS  Google Scholar 

  • LePage EL, Hubbard AE (1986) Basilar membrane motion in guinea pig cochlea exhibits frequency-dependent DC offset. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. Berlin: Springer, pp. 274–281.

    Google Scholar 

  • Lesser MB, Berkley DA (1972) Fluid mechanics of the cochlea. J Fluid Mech 51:497–512.

    Google Scholar 

  • Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455.

    PubMed  CAS  Google Scholar 

  • Lien M (1973) A mathematical model of the mechanics of the cochlea. D.Sc. dissertation, Washington University, St. Louis, MO.

    Google Scholar 

  • Lien MD, Cox JR (1974) A mathematical model of the mechanics of the cochlea. J Acoust Soc Am 55(A):432.

    Google Scholar 

  • Lighthill MJ (1981) Energy flow in the cochlea. J Fluid Mech 106:149–213.

    Google Scholar 

  • Lighthill MJ (1991) Biomechanics of hearing sensitivity. J Vibr Acoust 113:1–13.

    Google Scholar 

  • Lim DJ (1980) Cochlea anatomy related to cochlear micromechanics. A review. J Acoust Soc Am 67:1686–1685.

    PubMed  CAS  Google Scholar 

  • Liu W, Andreou AG, Goldstein MH (1992) Voiced-speech representation by an analog silicon model of the auditory periphery. IEEE Trans Neural Networks 3:477–487.

    CAS  Google Scholar 

  • Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212.

    PubMed  CAS  Google Scholar 

  • Lyon RF (1982) A computational model of filtering, detection, and compression in the cochlea. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Paris, France, May 1982.

    Google Scholar 

  • Lyon RF, Dyer L (1986) Experiments with a computational model of the cochlea. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tokyo, Japan, April 1986.

    Google Scholar 

  • Lyon RF, Lauritzen N (1985) Processing speech with the multisignal serial signal processor. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Tampa, FL, March 1985.

    Google Scholar 

  • Lyon RF, Mead C (1988) An analog electronic cochlea. IEEE Trans Acoust Speech Sig Proc 36:1119–1134.

    Google Scholar 

  • Mammano F, Ashmore JF (1993) Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365:838–841.

    PubMed  CAS  Google Scholar 

  • Mammano F, Nobili R (1993) Biophysics of the cochlea: linear approximation. J Acoust Soc Am 93:3320–3332.

    PubMed  CAS  Google Scholar 

  • Matthews JW (1980) Mechanical Modeling of Nonlinear Phenomena Observed in the Peripheral Auditory System. Ph.D. thesis, Washington University, St. Louis (MO).

    Google Scholar 

  • Matthews JW, Molnar CE (1986) Modeling of intracochlear and ear canal distortion product 2f2-f1. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 258–265.

    Google Scholar 

  • Mead C (1989) Analog VLSI and Neural Systems. Reading: Addison-Wesley.

    Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711.

    PubMed  CAS  Google Scholar 

  • Meddis R, Hewitt MJ, Shackleton TM (1990) Non-linearity in a computational model of the response of the basilar membrane. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 403–410.

    Google Scholar 

  • Minorsky N (1962) Nonlinear Oscillations. Princeton: Van Nostrand.

    Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72.

    PubMed  CAS  Google Scholar 

  • Mountain DC, Hubbard AE, McMullen TA (1983) Electromechanical processes in the cochlea. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft: Delft University Press, pp. 119–126.

    Google Scholar 

  • Nedzelnitsky V (1974) Measurements of sound pressure in the cochlea of anesthetized cats. In: Zwicker E, Terhardt E (eds) Facts and Models in Hearing. New York: Springer-Verlag, pp. 45–53.

    Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689.

    PubMed  CAS  Google Scholar 

  • Neely ST (1981a) Finite difference solution of a two-dimensional mathematical model of the cochlea. J Acoust Soc Am 69:1386–1393.

    PubMed  CAS  Google Scholar 

  • Neely ST (1981b) Fourth-order partition dynamics for a two-dimensional model of the cochlea. Ph.D. thesis, Washington University, St. Louis, MO.

    Google Scholar 

  • Neely ST (1993) A model of cochlear mechanics with OHC motility. J Acoust Soc Am 94:137–146.

    PubMed  CAS  Google Scholar 

  • Neely ST, Kim DO (1983) An active cochlear model showing sharp tuning and high sensitivity. Hear Res 9:123–130.

    PubMed  CAS  Google Scholar 

  • Neely ST, Kim DO (1986) A model for active elements in cochlear biomechanics. J Acoust Soc Am 79:1472–1480.

    PubMed  CAS  Google Scholar 

  • Neely ST, Stover LJ (1993) Otoacoustic emissions from a non-linear, active model of cochlear mechanics. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 64–71.

    Google Scholar 

  • Nuttall AL, Dolan DF (1993) Two tone suppression of inner hair cell and basilar membrane responses in the guinea pig. J Acoust Soc Am 93:390–400.

    PubMed  CAS  Google Scholar 

  • Nuttall AL, Dolan DF, Avinash G (1990) Measurements of basilar membrane tuning and distortion with laser Doppler velocimetry. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 288–295.

    Google Scholar 

  • Olson E, Mountain DC (1991) In vivo measurement of basilar membrane stiffness. J Acoust Soc Am 89:1262–1275.

    PubMed  CAS  Google Scholar 

  • Olson E, Mountain DC (1993) Probing the cochlear partition’s micromechanical properties with measurements of radial and longitudinal stiffness variations. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 280–287.

    Google Scholar 

  • Olson E, Mountain DC (1994) Mapping the cochlear partition’s stiffness to its cellular architecture. J Acoust Soc Am 95:395–400.

    PubMed  CAS  Google Scholar 

  • Peterson BP, Bogert LC (1950) A dynamical theory of the cochlea. J Acoust Soc Am 22:3–381.

    Google Scholar 

  • Plassmann W, Peetz W, Schmidt M (1987) The cochlea in gerbelline rodents. Brain Behav Evol 30:82–101.

    PubMed  CAS  Google Scholar 

  • Ranke OF (1931) Die Gleichrichter-Resonanztheorie. Munich: Lehmann.

    Google Scholar 

  • Ranke OF (1950) Theory of operation of the cochlea: a contribution to the hydrodynamics of the cochlea. J Acoust Soc Am 22:772–777.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 64:158–176.

    Google Scholar 

  • Rhode WS (1977) Some observations on two-tone interaction measured with the Mössbauer effect. In: Evans EF, Wilson JP (eds) Psychophysics and Physiology of Hearing. London: Academic Press, pp. 27–38.

    Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64:158–176.

    PubMed  CAS  Google Scholar 

  • Rhode WS, Cooper NP (1993) Two-tone suppression and distortion production on the basilar membrane in the hook region of cat and guinea-pig cochleae. Hear Res 66:31–45.

    PubMed  CAS  Google Scholar 

  • Robles LR (1973) Measurements on the transient response of the basilar membrane using the Mössbauer effect. Ph.D. Thesis, University of Wisconsin, Madison, WI.

    Google Scholar 

  • Robles L, Rhode WS, Geisler CD (1976) Transient response of the basilar membrane measured in squirrel monkeys using the Mössbauer effect. J Acoust Soc Am 59:926–939.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the chinchilla cochlea. Input-output functions, tuning curves, and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1991) Two-tone distortion in the basilar membrane of the cochlea. Nature 349:413–414.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1991a) Application of a commercially-manufactured Doppler-shift laser velocimeter to the measurement of basilar-membrane vibration. Hear Res 51:215–230.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC (1991b) Furosemide alters organ of Corti mechanics: evidence for feeback of outer hair cells upon the basilar membrane. J Neurosci 11:1057–1067.

    PubMed  CAS  Google Scholar 

  • Ruggero MA, Rich NC, Recio A (1992) Basilar membrane responses to clicks. In: Cazals Y, Demany L, Horner K (eds) Auditory Physiology and Perception. Oxford: Pergamon Press, pp. 85–92.

    Google Scholar 

  • Ruggero MA, Robles L, Rich NC (1992) Two-tone distortion in the basilar membrane of the cochlea: mechanical basis of auditory-nerve rate suppression. J Neurophysiol (Bethesda) 68:1087–1099.

    CAS  Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja B (1990) Middle ear responses in the chinchilla and its relationship to the mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Kiang NYS (1968) Two-tone inhibition in auditory nerve fibres. J Acoust Soc Am 43:1120–1128.

    PubMed  CAS  Google Scholar 

  • Sachs MB, Hubbard AE (1980) Temporal aspects of two-tone suppression: low frequency suppressors effect on high characteristic frequency fibers. Hear Res 4:309–324.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Sellick PM, Yates GK, Patuzzi R (1983) The influence of Mössbauer source size and position on phase and amplitude measurements of the guinea pig basilar membrane. Hear Res 10:101–108.

    PubMed  CAS  Google Scholar 

  • Seneff S (1988) A joint synchrony/mean-rate model of auditory speech processing. J Phonetics 16(l):55–76.

    Google Scholar 

  • Shamma S (1988) The acoustic features of speech sounds in a model of auditory processing: vowels and voiceless fricatives. J Phonetics 10:77–91.

    Google Scholar 

  • Siebert WM (1974) Ranke revisited—a simple short-wave cochlear model. J Acoust Soc Am 56:594–600.

    PubMed  CAS  Google Scholar 

  • Steele CR (1974) Behavior of the basilar membrane with pure-tone excitation. J Acoust Soc Am 55:148–162.

    PubMed  CAS  Google Scholar 

  • Steele CR (1976) Cochlear mechanics. In: Keidel WD, Neff WD (eds) Handbook of Sensory Physiology, Vol. 3, Auditory System: Clinical and Special Topics. Berlin: Springer, pp. 443–478.

    Google Scholar 

  • Steele CR, Taber LA (1979a) Comparison of WKB calculations and finite difference calculations for a two-dimensional cochlear model. J Acoust Soc Am 65:1001–1006.

    PubMed  CAS  Google Scholar 

  • Steele CR, Taber LA (1979b) Comparison of WKB calculations and experimental results for a three-dimensional cochlear model. J Acoust Soc Am 65:1007–1018.

    PubMed  CAS  Google Scholar 

  • Steele CR, Taber LA (1981) Three-dimensional model calculations for guinea pig cochlea. J Acoust Soc Am 69:1107–1111.

    PubMed  CAS  Google Scholar 

  • Strube HW (1982) Time-varying wave digital filters for modeling analog systems. IEEE Trans Acoust Speech Sig Proc 30:864–868.

    Google Scholar 

  • Strube HW (1985) A computationally efficient basilar membrane model. Acustica 58:207–214.

    Google Scholar 

  • Taber LA, Steele CR (1981) Cochlear model including three-dimensional fluid and four modes of partition flexibility. J Acoust Soc Am 70:426–436.

    PubMed  CAS  Google Scholar 

  • Talmadge CL, Tubis A (1993) On modeling the connection between spontaneous and evoked otoacoustic emissions. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 25–32.

    Google Scholar 

  • Talmadge CL, Long GR, Murphy WJ, Tubis A (1990) Quantitative evaluation of limit-cycle oscillator models of spontaneous otoacoustic emissions. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 235–242.

    Google Scholar 

  • Teich MC, Heneghan C, Khanna SM, Flock Å, Brundin L, Ulfendahl M (1993) Analysis of dynamical motion of sensory cells in the organ of Corti using the spectrogram. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory System. Singapore: World Scientific, pp. 272–279.

    Google Scholar 

  • Ulfendahl M, Khanna SM (1993) Tuning characteristics of the hearing organ in an in vitro preparation of the gerbil temporal bone. Pflugers Archiv 424:95–104.

    PubMed  CAS  Google Scholar 

  • Ulfendahl M, Khanna SM, Flock  (1991) Effects of opening and resealing the cochlea on the mechanical response in the isolated temporal bone preparation. Hear Res 57:31–37.

    PubMed  CAS  Google Scholar 

  • Ulfendahl M, Khanna SM, Lofstrand P (1993) Changes in the mechanical tuning characteristics of the hearing organ following acoustic overstimulation. Eur J Neurosci 5:713–723.

    PubMed  CAS  Google Scholar 

  • Viergever MA, Diependaal RJ (1983) Simultaneous amplitude and phase match of cochlear model calculations and basilar membrane vibration data. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. The Hague: Martinus Nijhoff/Delft: Delft University Press, pp. 53–61.

    Google Scholar 

  • van den Raadt MPMG, Duifhuis H (1990) A generalized Van der Pol-oscillator cochlea model. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The Mechanics and Biophysics of Hearing. New York: Springer-Verlag, pp. 227–234.

    Google Scholar 

  • von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Watts L, Kerns D, Lyon R, Mead C (1992) Improved implementation of the silicon cochlea. IEEE J Solid State Circ 27:692–700.

    Google Scholar 

  • Wilson JP (1980) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tinnitus. Hear Res 2:233–252.

    PubMed  CAS  Google Scholar 

  • Wilson JP, Johnstone JR (1973) Basilar membrane correlates of the combination tone 2f1 — f2. Nature 241:206–207.

    PubMed  CAS  Google Scholar 

  • Xue S, Mountain D, Hubbard A (1993) Direct measurement of electrically-evoked basilar membrane motion. In: Duifhuis H, Horst JW, van Dijk P, van Netten SM (eds) Biophysics of Hair Cell Sensory Systems. Singapore: World Scientific, pp. 361–369.

    Google Scholar 

  • Zweig G (1991) Finding the impedance of the organ of Corti. J Acoust Soc Am 89:1221–1254.

    Google Scholar 

  • Zwicker E (1979) A model describing nonlinearities in hearing by active processes with saturation at 40 dB. Biol Cybern 35:243–250.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1986) A hardware cochlear nonlinear preprocessing model with active feedback. J Acoust Soc Am 80:146–153.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ (1950) Theory of the acoustical action of the cochlea. J Acoust Soc Am 22:778–784.

    Google Scholar 

  • Zwislocki JJ (1980) Five decades of research on cochlear mechanics. J Acoust Soc Am 67:1679–1685.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Cefaratti LK (1989) Tectorial membrane. II: Stiffness measurements in vivo. Hear Res 42:211–227.

    PubMed  CAS  Google Scholar 

  • Zwislocki JJ, Kletsky EJ (1979) Tectorial membrane: a possible effect on frequency analysis in the cochlea. Science 203:639–641.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Hubbard, A.E., Mountain, D.C. (1996). Analysis and Synthesis of Cochlear Mechanical Function Using Models. In: Hawkins, H.L., McMullen, T.A., Popper, A.N., Fay, R.R. (eds) Auditory Computation. Springer Handbook of Auditory Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4070-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4070-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8487-1

  • Online ISBN: 978-1-4612-4070-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics