Skip to main content

Abstract

The calculation of the momentum and heat-transfer properties of turbulent internal flows is similar to that for the laminar flows of Chapter 5, with the obvious differences implied by the addition of turbulent stresses. Again we concentrate our attention on three different conditions in which momentum and heat transfer may occur in duct flows. Section 7.1 deals with fully developed velocity and temperature fields in ducts with smooth and rough surfaces. Section 7.2 considers heat transfer starting far downstream of the duct entry, so that the velocity field is fully developed (∂u/∂x=0,v=0), and the temperature field is developing. In this case, the energy equation can be written in a form like Eq. (5.3), using the eddy-viscosity and turbulent-Prandtl-number concepts, as

$$ u\frac{{\partial T}}{{\partial x}} = \frac{v}{{\Pr }}\frac{1}{{{{r}^{K}}}}\frac{\partial }{{\partial y}}\left[ {{{r}^{K}}\left( {1 + \frac{{\Pr }}{{{{{\Pr }}_{t}}}}\varepsilon _{m}^{ + }} \right)\frac{{\partial T}}{{\partial y}}} \right], $$
((7.1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernces

  1. Schlichting, H.: Boundary-Layer Theory,. McGraw-Hill, New York, 1981.

    Google Scholar 

  2. McAdams, W. H.: Heat Transmission, 3d ed.. McGraw-Hill, New York, 1954.

    Google Scholar 

  3. Lawn, C. J.: Turbulent heat transfer at low Reynolds number.J. Heat Transfer 91:532 (1969).

    Google Scholar 

  4. Gowan, R. A. and Smith, J. W.: The effect of the Prandtl number on temperature profiles for heat transfer in turbulent pipe flow. Chem. Eng. Sci. 22:1701 (1967).

    Article  Google Scholar 

  5. Habib, I. S. and Na, T. Y.: Prediction of heat transfer in turbulent pipe flow with constant wall temperature. J. Heat Transfer 96:253 (1974).

    Article  Google Scholar 

  6. Dipprey, D. F. and Sabersky, R. M.: Heat and momentum transfer in smooth and rough tubes at various Prandtl numbers. Int. J. Heat Mass Transfer 6:329 (1963).

    Article  Google Scholar 

  7. Sleicher, C. A. and Rouse, M. W.: A convenient correlation for heat transfer to constant and variable property fluids in turbulent pipe flow. Int. J. Heat Mass Transfer 18:677–683 (1975).

    Article  ADS  Google Scholar 

  8. Kader, B. A. and Yaglom, A. M.: Heat and mass transfer laws for fully turbulent wall flows. Int. J. Heat Mass Transfer 15:2329–2351 (1972).

    Article  Google Scholar 

  9. Nunner, W.: Heat transfer and pressure drop in rough tubes. VDI-For- schungschaft 455, Ser. B 22:5 (1956). Also Atomic Energy Research Establishment Doc. AERE Lib/Trans. 786 (translated by F. Hudswell). Harwell, England, 1958.

    Google Scholar 

  10. Johnston, J. P.: Turbulence, in Topics in Applied Physics (P. Bradshaw, ed.), Vol. 12. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  11. Cebeci, T. and Chang, K. C.: A general method for calculating momentum and heat transfer in laminar and turbulent duct flows. Num. Heat Transfer 1:39 (1978).

    Article  ADS  Google Scholar 

  12. Barbin, A. R. and Jones, J. B.: Turbulent flow in the inlet region of a smooth pipe. J. Basic Eng. 85:29 (1963).

    Google Scholar 

  13. Laufer, J.: The structure of turbulence in fully developed pipe flow. NACA Rep. No. 1174, 1954.

    Google Scholar 

  14. Hall, W. B. and Khan, S. A. Experimental investigation into the effect of the thermal boundary condition on heat transfer in the entrance region of a pipe. J. Mech. Eng. Sci. 6:250 (1964).

    Article  Google Scholar 

  15. Reynolds, H. C., Swearingen, T. B., and McEligot, D. M.: Thermal entry for low Reynolds number turbulent flow. J. Basic Eng. 91:87 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cebeci, T., Bradshaw, P. (1988). Uncoupled Turbulent Duct Flows. In: Physical and Computational Aspects of Convective Heat Transfer. Physical and Computational Aspects of Convective Heat Transfer. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3918-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3918-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96821-6

  • Online ISBN: 978-1-4612-3918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics