Skip to main content

Abstract

As in Chapter 6, we begin with the statement that the main difference between laminar flows and turbulent flows is that the effective diffusivities in turbulent flow are unknown. In Chapter 6 the temperature and/or concentration differences were small enough not to affect the mean velocity field, and it was assumed without explicit comment that the fluctuating velocity field, which controls the turbulent transport of momentum, heat, or mass, was also unaffected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rotta, J.C.:Turbulent boundary layers with heat transfer in compressible flow. AGARD Rept. 281, 1960

    Google Scholar 

  2. Van Driest, E. R.: Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18:145 (1951).

    MathSciNet  MATH  Google Scholar 

  3. Fernholz, H. H. and Finley, P. J.: A critical compilation of compressible turbulent boundary-layer data. AGARDographs 223, 253, 263,1977.

    Google Scholar 

  4. Bradshaw, P.: An improved Van Driest skin-friction formula for compressible turbulent boundary layers. AIAA J., 15:212 (1977).

    Article  ADS  Google Scholar 

  5. Fernholz, H. H.: Ein halbempirisches Gesetz für die Wandreibung in kompres- sibilen turbulenten Grenzschichten bei isothermer und adiabater Wand. Z. Angew. Math. u. Mech. 51:T146, (1971).

    Google Scholar 

  6. Mabey, D. G.: Some observations on the wake component of the velocity profiles of turbulent boundary layers at subsonic and supersonic speeds. Aero. Quart. 30:590 (1979).

    Google Scholar 

  7. Coles, D.: The turbulent boundary layer in a compressible fluid. Phys. Fluids 7:1403 (1964).

    Article  ADS  MATH  Google Scholar 

  8. Hopkins, E. J. and Inouye, M.: An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers. AIAA J., 9:993 (1971).

    Article  ADS  Google Scholar 

  9. Spalding, D. B. and Chi, S. W.: The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech. 18:117 (1964).

    Article  ADS  MATH  Google Scholar 

  10. Hopkins, E. J. and Keener, E. R.: Pressure gradient effects on hypersonic turbulent skin-friction and boundary-layer profiles. AIAA J. 10:1141 (1972).

    Article  ADS  Google Scholar 

  11. Cary, A. M. and Bertram, M. H.: Engineering prediction of turbulent skin friction and heat transfer in high-speed flow. NASA TN D-7507, 1974.

    Google Scholar 

  12. Cary, A. M.: Summary of available information on Reynolds analogy for zero-pressure gradient, compressible turbulent-boundary-layer flow. NASA TN D-5560, 1970.

    Google Scholar 

  13. Goddard, F. E., Jr.: Effect of uniformly distributed roughness on turbulent skin-friction drag at supersonic speeds.J. Aero/Space Sei., 26:1–15 (1959).

    MATH  Google Scholar 

  14. Fenter, F. W.: The effect of heat transfer on the turbulent skin-friction of uniformly rough surfaces in compressible flow. The University of Texas, Defense Research Lab Rept. DLR-368, CM-839, April 1956.

    Google Scholar 

  15. Moore, D. R. and Harkness, J.: Experimental investigation of the compressible turbulent boundary layer at very high Reynolds numbers, M = 2.8, Rept. No. 0.71000/4R-9, LTV Res. Center, 1964.

    Google Scholar 

  16. Matting, F. W., Chapman, D. R., Nyholm, J. R. and Thomas, A. G.: Turbulent skin friction at high Mach numbers and Reynolds numbers in air and helium. NASA TR R-82, 1961.

    Google Scholar 

  17. Cebeci, T., Smith, A. M. O. and Mosinskis, G. J.: Calculation of compressible adiabatic turbulent boundary layers. AIAA J. 8:1973 (1970).

    Google Scholar 

  18. Michel, R.: Etude de la transition sur les profiles d’aile; establissement d’un critere de determination de point de transition et calcul de la trainee de profile incompressible. ONERA Rept 1/578A, 1951.

    Google Scholar 

  19. Pappas, C. S.: Measurement of heat transfer in the turbulent boundary layer on a flat plate in supersonic flow and comparison with skin-friction results. NACA Tech. Note No. 3222, 1954.

    Google Scholar 

  20. Squire, L. C.: Further experimental investigations of compressible turbulent boundary layers with air injection. ARC R&M 3627, 1970.

    Google Scholar 

  21. Pasiuk, L., Hastings, S. M., and Chatham, R.: Experimental Reynolds analogy factor for a compressible turbulent boundary layer with a pressure gradient. Naval Ordnance Rept. NOLTR 64–200, White Oak, Maryland, 1965.

    Google Scholar 

  22. Lewis, J. E., Gran, R. L. and Kubota, T.: An experiment in the adiabatic compressible turbulent boundary layer in adverse and favorable pressure gradients. J. Fluid Mech., 51:657 (1972).

    Article  ADS  Google Scholar 

  23. Adamson, T. C. and Messiter, A. F.: Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech., 12:103–138 Annual Reviews, Palo Alto, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  24. Computation of Viscous-Inviscid Interactions. AGARD Conf. Proceedings No. 291, 1981.

    Google Scholar 

  25. Melnik, R. E.: Turbulent interactions on airfoils at transonic speeds—Recent developments. AGARD CP 291, Paper 10, 1981.

    Google Scholar 

  26. Law, C. H.: Supersonic turbulent boundary-layer separation. AIAA J. 12:1974.

    Google Scholar 

  27. Roshko, A. and Thomke, G. J.: Supersonic turbulent boundary-layer interaction with a compression corner at very high Reynolds number. Proc. Symposium on Viscous Interaction Phenomena in Supersonic Hypersonic Flow. USAF Aerospace Research Labs., Wright-Patterson AFB, Ohio, Univ. of Dayton Press, May 1969.

    Google Scholar 

  28. Hayakawa, K. and Squire, L. C.: The effect of the upstream boundary-layer state on the shock interaction at a compression corner.J. Fluid Mech. 122:369 (1982).

    Article  ADS  Google Scholar 

  29. Lighthill, M. J.: On boundary layers and upstream influence, II, Supersonic flow without separation. Proc. Royal Soc. A, 217:1953.

    Google Scholar 

  30. Inger, G. R.: Nonasymptotic theory of unseparated turbulent boundary-layer- shock-wave interaction with application to transonic flows. In Numerical and Physical Aspects of Aerodynamic Flows (ed. T. Cebeci) p. 159, Springer-Verlag, New York 1982.

    Google Scholar 

  31. Viegas, J. R. and Horstmann, C. C.: Comparison of multiequation turbulence models for several shock boundary-layer interaction flows. AIAA J. 17:811–820, 1979

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cebeci, T., Bradshaw, P. (1988). Coupled Turbulent Boundary Layers. In: Physical and Computational Aspects of Convective Heat Transfer. Physical and Computational Aspects of Convective Heat Transfer. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3918-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3918-5_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-96821-6

  • Online ISBN: 978-1-4612-3918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics