Skip to main content

On the numerical simulation of turbulent flows around vehicles

  • Conference paper
Computational Fluid Dynamics and Reacting Gas Flows

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 12))

  • 317 Accesses

Abstract

A finite element method for the simulation of Navier-Stokes flows is presented. Error estimates are available for this numerical method; they show that turbulence modelling is necessary beyond a critical Reynolds number. In the near wake of the vehicle the classical turbulence models like the k-ε model are not very good because the flow is essentially transient. The MPP model is proposed because it is based on the fact that the flow has two length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. McLaughlin, G. Papanicolaou, O. Pironneau: Convection of microstructures. SIAM J. Appl. Math. 45, (1985), 780–797.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. J.L. Lions: Quelques méthodes des résolutions des problèmes non linéaires, Dunod, (1969).

    Google Scholar 

  3. O. Ladyzhenskaya: Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New-York (1963).

    MATH  Google Scholar 

  4. V. Girault, P.A. Raviart: Navier-Stokes equations. Springer series in computational mathematics (1986).

    MATH  Google Scholar 

  5. F. Thomasset: Implementation of F.E.M. for Navier-Stokes equations. Springer series in computational physics (1981).

    Google Scholar 

  6. C. Bernardi, G. Raugel: A conforming F.E.M. for the time dependant Navier-Stokes equations. Report 84034, Labo. Numer. Anal., University Paris 6.

    Google Scholar 

  7. O. Pironneau: On the transport diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (1982), pp. 309–332.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Suli: Lagrange Galerkin methods. Internal report, Univ. of Oxford (1985).

    Google Scholar 

  9. R. Glowinski: Numerical methods for nonlinear variational problems. Springer lecture Notes in Comp. Physics, 1984.

    MATH  Google Scholar 

  10. J. Cahouet: Computational Fluid Dynamics. Lecture Séries in Von Karman Institute, 1986–05, March 3,7, Rhode St Genèse (Belgium) 1986.

    Google Scholar 

  11. L. Alpern: Condition aux limites non absorbantes; thèse, Université Paris 6, 1985.

    Google Scholar 

  12. O. Pironneau: Conditions aux limites sur la pression pour les équations de Navier-Stokes. Note CRAS 30319, 1986, p. 403.

    Google Scholar 

  13. R. Verfurth: Finite element approximations of stationnary Navier-Stokes equations with slip boundary conditions, Numer. Math, (à paraître).

    Google Scholar 

  14. F. El Dabaghi et O. Pironneau: Stream vectors in 3D aerodynamics, Numer. Math., 1986, 48, pp. 581–589.

    Article  Google Scholar 

  15. L. Rosenhead: Laminar boundary layers, Oxford University Press, 1966.

    Google Scholar 

  16. A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics of Turbulence, Vol.2, MIT Press (1985).

    Google Scholar 

  17. J.S. Smagorinsky: Mon Weather Rev. 91, 99–164.

    Google Scholar 

  18. B.E. Launder & D.B. Spalding: Mathematical models of turbulence. Academic Press, 1972.

    MATH  Google Scholar 

  19. D. Laurence: A computational method for the determination of the flow field around vehicles. LNH-EDF Chatou-France.

    Google Scholar 

  20. T. Chacon, O. Pironneau: On the mathematical foundations of the k-ε turbulent model. To appear.

    Google Scholar 

  21. T. Chacon: Etude d’un modèle pour la convection des microstructures. Third Cycle Thesis, Univ. Sevilla (SPAIN). Sept. 1984.

    Google Scholar 

  22. M. Bercovier, O. Pironneau, V. Sastri: Finite elements and characteristics. Applied Math. Model, 1983, Vol.7, pp. 89–96.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Priestly: Lagrange and characteristics Galerkin methods, Ph.D. Thesis, Oxford University, 1986.

    Google Scholar 

  24. C. Begue, J. Périaux, P. Perrier, C. Pouletty: Simulation numérique d’écoulements turbulents dans les entrées d’air, 22ème Colloque d’Aérodynamique Appliquée. Lille 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hecht, F., Pironneau, O. (1988). On the numerical simulation of turbulent flows around vehicles. In: Engquist, B., Majda, A., Luskin, M. (eds) Computational Fluid Dynamics and Reacting Gas Flows. The IMA Volumes in Mathematics and Its Applications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3882-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3882-9_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8388-1

  • Online ISBN: 978-1-4612-3882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics