Skip to main content

Computation of Flows Containing Edge Vortices

  • Conference paper
Computational Fluid Dynamics and Reacting Gas Flows

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 12))

  • 319 Accesses

Abstract

In this paper we present and discuss results from several investigations of the authors and co-workers over the past three years. The studies are primarily directed at the numerical solution of the Euler equations discretized upon a mesh for the case of vortices shed from the leading edge of a delta wing. The speeds in the various cases range from zero to supersonic. The major discussion of the paper points to the use of Computational Fluid Dynamics as a tool for the understanding of the fundamental fluid mechanical processes in this class of flows. Among the issues discussed are the capturing of a vortex sheet upon a mesh, the mechanism of total pressure loss, the stability of the spiral sheet, the structure of a nearly inviscid vortex core, and the stability of the core. The underlying assumption of course is that flow instability can be studied by numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoeijmakers, H.W.M: Numerical Computation of Vortical Flows About Wings, NLR Report MP 83073 U, Amsterdam, 1983.

    Google Scholar 

  2. Smith, J.H.B.: Theoretical Modelling of Three-Dimensional Vortex Flows in Aerodynamics. Aero J., April 1984, pp. 101–116.

    Google Scholar 

  3. Moore, D.W., and Griffith-Jones, R: The Stability of an Expanding Circular Vortex Sheet, Mathematika, Vol. 21, 1974, pp. 128–133.

    Article  MATH  Google Scholar 

  4. Moore, D.W.: The Stability of an Evolving Two-Dimensional Vortex Sheet, Mathematika, Vol. 23, 1976, pp.35–44.

    Article  MathSciNet  MATH  Google Scholar 

  5. Hoeijmakers, H.W.M and Vaatstra, W.: A Higher-Order Panel Method Applied to Vortex Sheet Roll-Up. AIAA J. Vol. 21, No. 4, 1983, pp. 516–523.

    Article  ADS  MATH  Google Scholar 

  6. Krause, E., Shi, X.G., and Hartwich, P.M.: Computation of Leading-Edge Vortices, AIAA Paper 83–1907, 1983.

    Google Scholar 

  7. Rizzi, A., and Eriksson, L.E.: Computation of Inviscid Incompressible Flow with Rotation, J. Fluid Mech, Vol. 153, 1985, pp. 275–312.

    Article  ADS  MATH  Google Scholar 

  8. Rizzi, A.: Euler Solutions of Transonic Vortex Flows Around the Dillner Wing. J. Aircraft, Vol. 22. April 1985, pp. 325–328.

    Article  Google Scholar 

  9. Rizzi, A.: Multi-Cell Vortices Observed in Fine-Mesh Solutions to the Incompressible Euler Equations, in Super Computers and Fluid Dynamics, ed. K. Kuwahara, Lect. Notes Engineering, Springer, to appear.

    Google Scholar 

  10. Payne, F.M., Ng. T.T., Nelson, R.C. and Schiff, L.B: Visualization and Flow Surveys of the Leading-Edge Vortex Structure on Delta Wing Planform, AIAA-86–0330, Jan 1986.

    Google Scholar 

  11. Murman, E.M. and Powell, K.: Comparison of Measured and Computed Pitot Pressures in Leading-Edge Vortex from a Delta Wing. Technical Report CFDL-TR-86–2, Massachusetts Institute of Technology, Jan 1986.

    Google Scholar 

  12. Monnerie, B. and Werlé, H.: Étude de l’Écoulement Supersonique & Hypersoniqui autour d’une Aile E’lancee en Incidence. In AGARD-CP-30 1968, Paper 23.

    Google Scholar 

  13. Brown, S.N.: The Compressible Inviscid Leading Edge Edge Vortex. Journal of Fluid Mechanics, 22, Part 1, Nov. 1965.

    Google Scholar 

  14. Snow, J.T.: On Inertial Instability as Related to the Multiple-Vortex Phenomenon. J. Atmos Sci, Vol. 35, Sept 1978, pp. 1660–1677.

    Article  ADS  Google Scholar 

  15. Hall, M.G.: Vortex Breakdown, Ann Rev Fluid Mech, Vol. 4, 1972, pp. 195–218.

    Article  ADS  Google Scholar 

  16. Leibovich, S.: The Structure of Vortex Breakdown, Ann Rev Fluid Mech, Vol. 10, 1978, pp. 221–246.

    Article  ADS  Google Scholar 

  17. Hoeijmakers, H.W.M., and Rizzi, A.: Vortex-Fitted Potential Solution Compared with Vortex-Captured Euler Solution for Delta Wing with Leading Edge Vortex Separation. AIAA Paper 84–2144, 1984.

    Google Scholar 

  18. Eriksson, L.E.: Generation of Boundary-Conforming Grids around Wing-Body Configurations using Transfinite Interpolation, AIAA J., Vol. 20, Oct. 1982, pp. 1313–1320.

    Article  ADS  MATH  Google Scholar 

  19. Rizzi, A.W. and Eriksson, L.E.: Computation of Flow Around Wings Based on the Euler Equations, J. Fluid Mech, Vol. 148, Nov. 1984, pp. 45–71.

    Article  ADS  Google Scholar 

  20. Powell, K., Murman, E., Perez, E., and Baron, J.: Total Pressure Loss in Vortical Solutions of the Conical Euler Equations, AIAA Paper 85–1701, 1985.

    Google Scholar 

  21. Murman, E., Rizzi, A., and Powell, K.: High Resolution Solutions of the Euler Equations for Vortex Flows. In Progress and Supercomputing in Computational Fluid Dyn., 1985, pp. 93–113.

    Google Scholar 

  22. Lambourne, N.C. and Bryer, D.W.: The Bursting of Leading-Edge Vortices — Some Observations and Discussion of the Phenomenon. ARC R & M No. 3282, 1961.

    Google Scholar 

  23. Newsome, R.W.: A Comparison of Euler and Navier-Stokes Solutions for Supersonic Flow over a Conical Delta Wing. AIAA-85-0111, Jan. 1985

    Google Scholar 

  24. Newsome, R. and Thomas, J.: Computation of Leading-Edge Vortex Flows. NASA Langley Vortex Flow Aerodynamics Conference, Hampton VA. Oct, 1985.

    Google Scholar 

  25. Rizzi, A.: Separation Phenomena in 2D and 3D Numerical Solutions of the Euler Equations, in Proc. 7th INRIA Conf. Computing Methods in Appl. Sci, Engr., North Holland, to appear.

    Google Scholar 

  26. Hirschel, E.H., and Fornasier, L.: Flowfield and vorticity distribution near wing trailing edges. AIAA paper 84–0421, New York.

    Google Scholar 

  27. Earnhaw, P.B.: An Experimental Investigation of the Struclture of a Leading-Edge Vortex, ARC R & M, No. 3281, 1961.

    Google Scholar 

  28. Rizzi, A.: Modelling Vortex Flowfields by Supercomputers with Super-Size Memory, Aero J. Vol. 89, April 1985, pp. 149–161.

    Google Scholar 

  29. Murman, E.M., and Rizzi, A.: Applications of Euler Equations to Sharp Edge Delta Wings with Leading Edge Vortices, in Proc. AGARD Sym. Appl. Comp. Fluid Dyn. Aero., AGARD-CP-?, to appear.

    Google Scholar 

  30. Rizzi, A.: Three-Dimensional Solutions to the Euler Equations with One Million Grid Points. AIAA Journal, Vol. 23, No. 12, Dec. 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Rizzi, A., Murman, E.M. (1988). Computation of Flows Containing Edge Vortices. In: Engquist, B., Majda, A., Luskin, M. (eds) Computational Fluid Dynamics and Reacting Gas Flows. The IMA Volumes in Mathematics and Its Applications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3882-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3882-9_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8388-1

  • Online ISBN: 978-1-4612-3882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics