Skip to main content

On the Universal Role of Turbulence in the Propagation of Deflagrations and Detonations

  • Conference paper
Computational Fluid Dynamics and Reacting Gas Flows

Part of the book series: The IMA Volumes in Mathematics and Its Applications ((IMA,volume 12))

Abstract

A given explosive mixture has two limiting burning rates; the lower limit of a molecular diffusion controlled laminar flame and the upper limit of Chapman-Jouguet detonation. Experiments indicate that nature always tends to maximize the burning rate under the constraints imposed by the initial and boundary conditions. Between the two limiting cases, the burning rate or the effective flame speed is a continuous spectrum. Turbulence plays the universal role in determining the burning rate that spans the three orders of magnitude from laminar flame (δ ≃ 0.5 m/s) to Chapman-Jouguet detonations (VCJ ≃ 1800 m/s). Weak turbulent flames are essentially laminar flames in which turbulence increases the burning surface area and hence the burning rate or effective burning velocity. The flame surface being a density interface is subjected to dynamics and diffusive instabilities and interface instability mechanisms become important as the turbulent intensity increases. The instability mechanisms play important roles in the break-up of the flame surface and control the fine structure and hence the details of the mixing and reaction processes. Shock waves become important for even higher levels of turbulence. Apart from inducing interface instability (Rayleigh-Taylor, etc.), creation of vortex structures, adiabatic heating of the mixtures, shock wave Mach interactions also produce shear layers and subsequent turbulence via Kelvin-Helmholtz instability. Boundary conditions control the effectiveness of the various mechanisms and it appears that there is no sharp distinction between high speed turbulence deflagrations and detonations. The lecture emphasizes the need to develop models to describe the mechanisms correctly and investigate the cooperative effects among themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Notes on Numerical Fluid Mechanics, Vol. 6, “Numerical Methods in Laminar Flame Propagation”, Eds. Norbert Peters and Jürgen Warnatz. Friedr. Vieweg &Sohn. Braunschweig/Wiesbaden (1981).

    Google Scholar 

  2. Chapman, W.R. and Wheeler, R.V. (1926) and (1927), J. chem. Soc. (London), Vol. 37 and Vol. 38.

    Google Scholar 

  3. Laffitte, P., Compt. Rend. 186, 95, 1 (1928).

    Google Scholar 

  4. Shchelkin, K.I., JETP, Vol. 10, p. 823 (1940).

    Google Scholar 

  5. Guenoche, H. and Manson, N., Rev. de l’Insitut Francais du Petrole, No. 2, pp. 53–69 (1979).

    Google Scholar 

  6. Brochet, C., “Contribution a l’etude des detonations instables dans les melanges gazeux. Doctoral thesis, Univ. Poitiers, France (1966).

    Google Scholar 

  7. Lee, J.H.S., “The Propagation of Turbulent Flames and Detonations in Tubes”, in ‘Advances in Chemical Reaction Dynamics’, Eds. Rentzepis, P. and Capellos, C., D. Reidel Publ. Co. (1985).

    Google Scholar 

  8. Lee, J.H.S., “Recent Advances in Gaseous Detonations”, AIAA paper 79–0287, 17th Aerospace Sciences Meeting, New Orleans (1979).

    Google Scholar 

  9. Manton, J., Von Elbe, G., Lewis, B., Jour. Chem. Phys., Vol. 20, No. 1 (1952).

    Google Scholar 

  10. Taylor, G.I., Proc. Roy. Soc. (London), A201, 192 (1950).

    ADS  Google Scholar 

  11. Markstein, G., Jour. Aero. Sci., Vol. 24, No. 3 (1957).

    Google Scholar 

  12. Markstein, G. and Squire, W., Jour. Acoustical Sec., Vol. 27, No. 3, p. 416 (1955).

    Article  Google Scholar 

  13. Rayleicfli, Lord., “The Theory of Sound”, Vol. II. Dover Publ. (1945).

    Google Scholar 

  14. Markstein, G., “Non-Steady Flame Propagation”, Pergamon Press (1964).

    Google Scholar 

  15. Lee, J.H.S. and Moen, I., Progr. Energy Comb. Sci., Vol. 6, p. 389 (1980).

    Article  Google Scholar 

  16. Sivashinsky, G.I., Ann. Rev. Fluid Mech., Vol. 15, pp. 179–199 (1983).

    Article  ADS  Google Scholar 

  17. Clavin, P., Progr. Energy Comb. Sci., Vol. 11, pp. 1–59 (1985).

    Article  Google Scholar 

  18. Rundinger, G. and Somers, L., J. Fluid Mech. 7, 161–176 (1960).

    Article  ADS  Google Scholar 

  19. Haas, J.F., “Interaction of Weak Shock Waves and Discrete Gas Inhomogeneities”, GALCTT thesis (1983), Calif. Inst, of Technology.

    Google Scholar 

  20. Emergy, M.H., Gardner, J., Boris, J., Cooper, A.C., Phys. of Fluids, 27(5), 1984.

    Google Scholar 

  21. Dryden, H.L., Q. Appl. Math, 1, 7 (1943).

    MathSciNet  MATH  Google Scholar 

  22. Taylor, G.I., Proc. Roy. Soc. (London), Ser. A, 151, 421 (1935).

    Article  ADS  MATH  Google Scholar 

  23. Tennekes, H., Phys. of Fluids, 669 (1968).

    Google Scholar 

  24. Fickett, W. and Davies, W., “Detonation”, Los Alamos series in basic and Applied Sciences. University of California Press (1979).

    Google Scholar 

  25. Shchelkin, K.I. and Troshin, Ya.K., “Gasdynamics of Osmbustion”, Mono Book Corp. (1965).

    Google Scholar 

  26. Soloukhin, R.I., “Shock Waves and Detonations in Gases”, Mono Book Corp. (1966).

    Google Scholar 

  27. Strehlow, R., “Fundamentals of Combustion”, Int. Textbook Co. (1968).

    Google Scholar 

  28. Bach, G., Khystautas, R. and Lee, J.H.S., 12th Comb. Symp. (Int’l), pp. 883–67 (1968), Combustion Institute, Pittsburgh.

    Google Scholar 

  29. Thomas, G.O. and Edwards, D.H., J. Phys. D., Appl. Phys 16, pp. 1881–1892 (1983).

    Article  ADS  Google Scholar 

  30. Oran, E.S., Young, T.R., Boris, J.P., Picone, J.M. and Edwards, D.H.,19th Comb. Symp. (Int’l), p. 573 (1982), Combustion Institute, Pittsburgh.

    Google Scholar 

  31. Dupre, G., Peraldi, O., Lee, J.H.S. and Knystautas, R., “Propagation of Detonation Waves in an Acoustic Attenuating Wall Tube”, paper submitted to the 11th ICDERS, Warsaw, Poland, Aug. 3–7 (1987).

    Google Scholar 

  32. Knystautas, R., Lee, J.H.S., Moen, I. and Wagner, H.Gg., 17th Comb. Symp. (Int’l), pp. 1235–1245 (1979). Combustion Institute, Pittsburgh.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lee, J.H.S. (1988). On the Universal Role of Turbulence in the Propagation of Deflagrations and Detonations. In: Engquist, B., Majda, A., Luskin, M. (eds) Computational Fluid Dynamics and Reacting Gas Flows. The IMA Volumes in Mathematics and Its Applications, vol 12. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3882-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3882-9_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8388-1

  • Online ISBN: 978-1-4612-3882-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics