Skip to main content

On the Use of a Bubble Formation Model to Calculate Nitrogen and Helium Diving Tables

  • Conference paper
Physiological Function in Special Environments

Abstract

Decompression sickness is caused by a reduction in ambient pressure which results in supersaturation and the formation of gas bubbles in blood or tissue. This well-known disease syndrome, often called “the bends,” is associated with such modern-day activities as deep-sea diving, working in pressurized tunnels and caissons, flying at high altitudes in unpressurized aircraft, and flying EVA excursions from spacecraft. A striking feature is that almost any body part, organ, or fluid can be affected, including skin, muscle, brain and nervous tissue, the vitreous humor of the eye, tendon sheath, and bone. Medical signs and symptoms range from itching and mild tingling sensations to crippling bone necrosis, permanent paralysis, and death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckman EL, Smith EM (1972). Tektite II: Medical supervision of the scientists in the sea. Texas Reports Biol Med 30: 155–169

    CAS  Google Scholar 

  • Bühlmann AA (1984). Decompression-Decompression Sickness. Springer-Verlag, New York (Available through: Best Publishing Company, P.O. Box 1978, San Pedro, CA 90732)

    Google Scholar 

  • Butler BD, Hills BA (1979). The lung as a filter for microbubbles. J Appl Physiol: Respirat Environ Exercise Physiol 47: 537–543

    CAS  Google Scholar 

  • D’Arrigo JS (1978). Improved method for studying the surface chemistry of bubble formation. Aviat Space Environ Med 49: 358–361

    PubMed  Google Scholar 

  • Davson H (1964). A textbook of General Physiology, 3rd ed. Churchill, London, p 185

    Google Scholar 

  • Flynn ET, Catron PW, Bayne CG (1981). Diving Medical Officer Student Guide. Naval Diving and Salvage Training Center, Panama City, FL

    Google Scholar 

  • Hennessy TR, Hempleman HV (1977). An examination of the critical released gas volume concept in decompression sickness. Proc Roy Soc Lond B 197: 299–313

    Article  CAS  Google Scholar 

  • Hoffman DC (1985). On the use of a gas-cavitation model to generate prototypal air and helium decompression schedules for divers. PhD thesis. Univ. of Hawaii, Honolulu

    Google Scholar 

  • Lambertsen CJ, Bardin H (1973). Decompression from acute and chronic exposure to high nitrogen pressure. Aerospace Med 44: 834–836

    PubMed  CAS  Google Scholar 

  • Lambertsen CJ, Idicula J (1975). A new gas lesion syndrome in man, induced by “isobaric gas counterdiffusion.” J Appl Physiol 39: 434–443

    PubMed  CAS  Google Scholar 

  • Paganelli CV, Strauss RH, Yount DE (1977). Bubble formation within decompressed hen’s eggs. Aviat Space Environ Med 48: 1429–1439

    Google Scholar 

  • Royal Naval Physiological Laboratory (1968). Air Diving Tables. Her Majesty’s Stationery Office, London

    Google Scholar 

  • Schilling CW, Werts MF, Schandelmeier NR (eds) (1976). The Underwater Handbook: A Guide to Physiology and Performance for the Engineer. Plenum Press, New York

    Google Scholar 

  • Strauss RH (1974). Bubble formation in gelatin: Implications for prevention of decompression sickness. Undersea Biomed Res 1: 169–174

    PubMed  CAS  Google Scholar 

  • Strauss RH, Kunkle TD (1974). Isobaric bubble growth: A consequence of altering atmospheric gas. Science 186: 443–444

    Article  PubMed  CAS  Google Scholar 

  • U.S. Department of the Navy (1970). U.S. Navy Diving Manual (NAVSHIPS 0994-LP-001–9010). U.S. Government Printing Office, Washington

    Google Scholar 

  • Yount DE (1978). Responses to the twelve assumptions presently used for calculating decompression schedules. In: Berghage TE (ed) Decompression Theory, the Seventeenth Undersea Medical Society Workshop. Undersea Medical Society, Bethesda, MD, pp 143–160

    Google Scholar 

  • Yount DE (1979a). Application of a bubble formation model to decompression sickness in rats and humans. Aviat Space Environ Med 50: 44–50

    PubMed  CAS  Google Scholar 

  • Yount DE (1979b). Skins of varying permeability: A stabilization mechanism for gas cavitation nuclei. J Acoust Soc Am 65: 1429–1439

    Article  Google Scholar 

  • Yount DE (1981). Application of a bubble formation model to decompression sickness in fingerling salmon. Undersea Biomed Res 8: 199–208

    PubMed  CAS  Google Scholar 

  • Yount DE (1982). On the evolution, generation, and regeneration of gas cavitation nuclei. J Acoust Soc Am 71: 1473–1481

    Article  CAS  Google Scholar 

  • Yount DE, Gillary EW, Hoffman DC (1984). A microscopic investigation of bubble formation nuclei. J Acoust Soc Am 76: 1511–1521

    Article  Google Scholar 

  • Yount DE, Hoffman DC (1983). On the use of a cavitation model to calculate diving tables. In: Hoyt JW (ed) Cavitation and Multiphase Flow Forum—1983. American Society of Mechanical Engineers, New York, pp 65–68

    Google Scholar 

  • Yount DE, Hoffman DC (1984). Decompression theory: A dynamic critical-volume hypothesis. In: Bachrach AJ, Matzen MM (eds) Underwater Physiology VIII: Proceedings of the Eighth Symposium on Underwater Physiology. Undersea Medical Society, Bethesda, MD, pp 131–146

    Google Scholar 

  • Yount DE, Hoffman DC (1986). On the use of a bubble formation model to calculate diving tables. Aviat Space Environ Med 57: 149–156

    PubMed  CAS  Google Scholar 

  • Yount DE, Lally DA (1980). On the use of oxygen to facilitate decompression. Aviat Space Environ Med 51: 544–550

    PubMed  CAS  Google Scholar 

  • Yount DE, Strauss RH (1976). Bubble formation in gelatin: A model for decompression sickness. J Appl Phys 47: 5081–5089

    Article  CAS  Google Scholar 

  • Yount DE, Yeung CM (1981). Bubble formation in supersaturated gelatin: A further investigation of gas cavitation nuclei. J Acoust Soc Am 69: 702–708

    Article  Google Scholar 

  • Yount DE, Yeung CM, and Ingle FW (1979). Determination of the radii of gas cavitation nuclei by filtering gelatin. J Acoust Soc Am 65: 1440–1450

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Yount, D.E., Hoffman, D.C. (1989). On the Use of a Bubble Formation Model to Calculate Nitrogen and Helium Diving Tables. In: Paganelli, C.V., Farhi, L.E. (eds) Physiological Function in Special Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3556-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3556-9_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8156-6

  • Online ISBN: 978-1-4612-3556-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics