Skip to main content

Some Arithmetical Semigroups

  • Chapter
Analytic Number Theory

Part of the book series: Progress in Mathematics ((PM,volume 85))

Abstract

The peculiar multiplication rule is asssociative but does not always produce an integer for integers

$$ n\,x\,m\, = \,\left\lfloor {\left( {\frac{3}{2}} \right)\,nm} \right\rfloor $$

n and m. If we try to force the result to be an integer by truncation, i. e., by

$$ n\,x\,m\, = \,\left\lfloor {\left( {\frac{3}{2}} \right)\,nm} \right\rfloor $$

we no longer have an associative multiplication. For example (3 x (5 x 7)) = 234. It would seem exceptional to find associativity in operations whose definition involves truncation. Our object is to study several such exceptional operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Arnoux, Some remarks about Fibonacci multiplication, in preparation.

    Google Scholar 

  2. P. T. Bateman and A. L. Duquette, The analogue of the Pisot-Vijayara- ghavan numbers in fields of formal power series, Illinois J. Math., 6(1962) 594–606.

    MathSciNet  MATH  Google Scholar 

  3. S. Beatty, Problem 3177, Amer. Math. Monthly, 33(1926), 159; 34(1927), 159.

    Google Scholar 

  4. E. R. Berlekamp, J. H. Conway, and R. K. Guy, “Winning Ways”, Academic Press, London, 1982.

    MATH  Google Scholar 

  5. L. Carlitz, R Scoville and V. E. Hoggatt, “Fibonacci Representations”, The Fibonacci Quarterly, 10 (1972) pp 1–28.

    MathSciNet  MATH  Google Scholar 

  6. G. Chabauty, Sur la répartition modulo 1 des certaines suites p—adiques, C. R. Acad. Sci. Paris, 231(1950), 465–466.

    MathSciNet  MATH  Google Scholar 

  7. I. G. Connell, A generalization of Wythoff’s game, Canadian Math. Bull., 2(1959), 181–190.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. S. M. Coxeter, The golden section, phyllotaxis and Wythoff’s game, Scripta Mathematica 19(1953), 135–143.

    MathSciNet  MATH  Google Scholar 

  9. A. Decomps-Guilloux, Généralization des nombres de Salem aux adèles, Acta Arith. 16(1969/70), 265–314.

    MathSciNet  Google Scholar 

  10. A. S. Fraenkel, M. Mushkin, and U. Tassa, Determination of [nθ] by its sequence of differences, Canadian Math. Bull., 21(1978), 441–446.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Knuth, The Fibonacci multiplication, Appi. Math. Lett., 1(1988), 57–60.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Porta and K. B. Stolarsky, The edge of a golden semigroup, to appear in Proc. 1987 JĂ nos Bolyai Math. Soc. Conf. Number Theory.

    Google Scholar 

  13. H. Porta and K. B. Stolarsky, A number system related to iterated maps whose ultimately periodic set is Q(mathtype5), preprint.

    Google Scholar 

  14. H. Porta and K. B. Stolarsky, Wythoff pairs as semigroup invariants, to appear in Advances in Mathematics.

    Google Scholar 

  15. H. Porta and K. B. Stolarsky, Half-silvered mirrors and Wythoff’s game, to appear in Canadian Math. Bull.

    Google Scholar 

  16. R. Salem, “Algebraic Numbers and Fourier Analysis”, Heath, 1963.

    Google Scholar 

  17. K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., 19(1976), 472–482.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Paul T. Bateman on the occasion of his retirement

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Bikhäuser Boston

About this chapter

Cite this chapter

Fraenkel, A.S., Porta, H., Stolarsky, K.B. (1990). Some Arithmetical Semigroups. In: Berndt, B.C., Diamond, H.G., Halberstam, H., Hildebrand, A. (eds) Analytic Number Theory. Progress in Mathematics, vol 85. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-3464-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3464-7_16

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-3481-0

  • Online ISBN: 978-1-4612-3464-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics