Skip to main content

The Epidermal Growth Factor Receptor: Control of Synthesis and Signaling Function

  • Conference paper
Growth Factors in Reproduction

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 42 Accesses

Abstract

This chapter serves two functions. The first is to introduce the area of growth factor receptors and signal transduction to an audience well versed in the action of reproductive tract hormones. The second is to summarize work from our own lab regarding the regulation of synthesis and function of the rat epidermal growth factor (EGF) receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem 1987; 56:881–914.

    Article  PubMed  CAS  Google Scholar 

  2. Yarden Y, Ullrich A. Growth factor receptor tyrosine kinases. Annu Rev Biochem 1988; 57:443–478.

    Article  PubMed  CAS  Google Scholar 

  3. Samelson LE, Patel MD, Weissman AM, Harford JB, Klausner RD. Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor. Cell 1986; 46:1083–1090.

    Article  PubMed  CAS  Google Scholar 

  4. Katagiri T, Ting JP-Y, Dy R, Prokop C, Cohen P, Earp HS. Tyrosine phosphorylation of a c-Src-like protein is increased in membranes of CD4-CD8-T lymphocytes from lpr/lpr mice. Mol Cell Biol 1989; 9:4914–4922.

    PubMed  CAS  Google Scholar 

  5. Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the newborn animal. J Biol Chem 1962; 237:1555–1562.

    PubMed  CAS  Google Scholar 

  6. Carpenter GE, Cohen S. Epidermal growth factor. Annu Rev Biochem 1979; 48: 193–216.

    Article  PubMed  CAS  Google Scholar 

  7. Bishop JM. The molecular genetics of cancer. Science 1987; 235:305–311.

    Article  PubMed  CAS  Google Scholar 

  8. Heldin CH, Westermark B. Growth factors: Mechanism of action and relation to oncogenes. Cell 1984; 37:9–20.

    Article  PubMed  CAS  Google Scholar 

  9. Devare SG, Reddy EP, Law JD, Robbins KC, Aaronson SA. Nucleotide sequence of the simian virus genome: Demonstration that its acquired cellular sequences encode the transforming gene product p28sis. Proc Natl Acad Sci 1983; 80:731–735.

    Article  PubMed  CAS  Google Scholar 

  10. Doolittle RF, Hunkapiller MW, Hood LE, et al. Simian sarcoma virus oncogene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 1983; 221:275–277.

    Article  PubMed  CAS  Google Scholar 

  11. Waterfield MD, Scrace T, Whittle N, et al. Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 1983; 304:35–39.

    Article  PubMed  CAS  Google Scholar 

  12. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 1984; 307:521–527.

    Article  PubMed  CAS  Google Scholar 

  13. Ullrich A, Coussens L, Hayflick JS, et al. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 1984; 309:418–425.

    Article  PubMed  CAS  Google Scholar 

  14. Sefton BM, Hunter T, Beemon K, Eckhart W. Evidence that the phosphorylation of tyrosine is essential for cellular transformation by Rous sarcoma virus. Cell 1980; 20:807–816.

    Article  PubMed  CAS  Google Scholar 

  15. Eckhart W, Hutchinson MA, Hunter T. An activity phosphorylating tyrosine in polyoma T antigen immunoprecipitates. Cell 1979; 18:925–933.

    Article  PubMed  CAS  Google Scholar 

  16. Witte ON, Dasgupta A, Baltimore D. Abelson murine leukaemia virus protein is phosphorylated in vitro to form phosphotyrosine. Nature 1980; 283:826–828.

    Article  PubMed  CAS  Google Scholar 

  17. Collett MS, Purchio AF, Erikson RL. Avian sarcoma virus-transforming protein, pp60src shows protein kinase activity specific for tyrosine. Nature 1980; 285:167–169.

    Article  PubMed  CAS  Google Scholar 

  18. Hunter T, Cooper JA. Protein-tyrosine kinases. Annu Rev Biochem 1985; 54:897–930.

    Article  PubMed  CAS  Google Scholar 

  19. Carpenter G, King L Jr, Cohen S. Epidermal growth factor stimulates phosphorylation in membrane preparations in vitro. Nature 1978; 276:409–410.

    Article  PubMed  CAS  Google Scholar 

  20. Ushiro H, Cohen S. Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 1980; 255:8363–8365.

    PubMed  CAS  Google Scholar 

  21. Kamps MP, Buss JE, Sefton BM. Mutation of NH2-terminal glycine of p60v-src prevents both mytistylation and morphological transformation. Proc Natl Acad Sci 1985; 82:4625–4628.

    Article  PubMed  CAS  Google Scholar 

  22. Hanks SK, Quinn AM, Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241:42–52.

    Article  PubMed  CAS  Google Scholar 

  23. Hafen E, Basler K, Edstroem JE, Rubin GM. Seven-less, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science 1987; 236:55–63.

    Article  PubMed  CAS  Google Scholar 

  24. Sprenger F, Stevens LM, Nüsslein-Volhard C. The Drosophilia gene torso encodes a putative receptor tyrosine kinase. Nature 1989; 338:478–483.

    Article  PubMed  CAS  Google Scholar 

  25. O’Keefe EJ, Pledger WJ. A model of cell cycle control: Sequential events regulated by growth factors. Mol Cell Endocrinol 1983; 31:167–186.

    Article  PubMed  Google Scholar 

  26. Schechter AL, Stern DF, Vaidyanathan L, et al. The neu oncogene: An erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature 1984; 312:513–516.

    Article  PubMed  CAS  Google Scholar 

  27. Bargmann CI, Hung MC, Weinberg RA. The neu oncogene encoding an epidermal growth factor receptor-related protein. Nature 1986; 319:226–230.

    Article  PubMed  CAS  Google Scholar 

  28. King CR, Kraus MH, Aaronson SA. Amplification of a novel v-erb B-related gene in a human mammary carcinoma. Science 1985; 229:974–978.

    Article  PubMed  CAS  Google Scholar 

  29. Kraus MH, Issing W, Miki T, Aaronson SA. Isolation and characterization of ERB B3, a third member of the ERB B/epidermal growth factor receptor family: Evidence for overexpression in a subset of human mammary tumors. Proc Natl Acad Sci 1989; 86:9193–9197.

    Article  PubMed  CAS  Google Scholar 

  30. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor I receptor primary structure: Comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5:2503–2512.

    PubMed  CAS  Google Scholar 

  31. Yarden Y, Escobedo JA, Kuang WJ, et al. Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors. Nature 1986; 323:226–232.

    Article  PubMed  CAS  Google Scholar 

  32. Escobedo JA, Williams LT. A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature 1988; 335:85.

    Article  PubMed  CAS  Google Scholar 

  33. Williams LT. Signal transduction by the platelet-derived growth factor receptor. Science 1989; 243:1564–1570.

    Article  PubMed  CAS  Google Scholar 

  34. McCune BK, Earp HS. The epidermal growth factor receptor tyrosine kinase in liver epithelial cells. J Biol Chem 1989; 264:15501–15507.

    PubMed  CAS  Google Scholar 

  35. Wang JYJ. Isolation of antibodies for phosphotyrosine by immunization with a v-abl oncogene-encoded protein. Mol and Cell Biol 1985; 5:3640–3643.

    CAS  Google Scholar 

  36. Morla AO, Draetta G, Beach D, Wang YJ. Reversible tyrosine phosphorylation of cdc2: Dephosphorylation accompanies activation during entry into mitosis. Cell 1989; 58: 193–203.

    Article  PubMed  CAS  Google Scholar 

  37. Kamps MP, Sefton BM. Identification of multiple novel polypeptide substrates of the v-src, v-yes, v-fps, v-ros, and v-erb-B oncogenic tyrosine protein kinases utilizing antisera against phosphotyrosine. Oncogene 1988; 2:305–315.

    PubMed  CAS  Google Scholar 

  38. Sefton BM, Hunter T, Ball EH, Singer SJ. Vinculin is a cytoskeletal target of the transforming protein of Rous sarcoma virus. Cell 1981; 24:165–174.

    Article  PubMed  CAS  Google Scholar 

  39. Hirst R, Horwitz A, Buck C, Rohrschneider L. Phosphorylation of the fibronectin receptor complex in cells transformed by oncogenes that encode tyrosine kinases. Proc Natl Acad Sci 1986; 83:6470–6474.

    Article  PubMed  CAS  Google Scholar 

  40. Glenney J. Two related but distinct forms of the Mr 36,000 tyrosine kinase substrate (calpactin) that interact with phospholipid and actin in a Ca2+-dependent manner. Proc Natl Acad Sci 1986; 83:4258–4262.

    Article  PubMed  CAS  Google Scholar 

  41. Gould KL, Bretscher A, Fsch FS, Hunter T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J 1989; 8:4133–4142.

    PubMed  CAS  Google Scholar 

  42. Rapp UR, Cleveland JL, Storm SM, Beck TW, Huleihel M. Transformation by raf and myc oncogenes. In: Aaronson SA, ed. Oncogenes and cancer. Tokyo: Japan Sci Soc Press, 1987b:55–74.

    Google Scholar 

  43. Morrison DK, Kaplan DR, Roberts TM. Signal transduction from membrane to cytoplasm: Growth factors and membrane-bound oncogene products increase Raf-1 phosphorylation and associated protein kinase activity. Proc Natl Acad Sci 1988; 85:8855–8859.

    Article  PubMed  CAS  Google Scholar 

  44. Morrison DK, Kaplan DR, Escobedo JA, Rapp UR, Roberts TM, Williams LT. Direct activation of the serine/threonine kinase activity of Raf-1 through tyrosine phosphorylation by the PDGF β-receptor. Cell 1989; 58:649–657.

    Article  PubMed  CAS  Google Scholar 

  45. Rhee SG, Suh PG, Ryu SH, Lee SY. Studies of inositol phospholipid-specific phospholipase C. Science 1989; 244:546–550.

    Article  PubMed  CAS  Google Scholar 

  46. Wahl MI, Nishibe S, Suh PG, Rhee SG, Carpenter G. Epidermal growth factor stimulates tyrosine phosphorylation of phospholipase C-II independently of receptor internalization and extracellular calcium. Proc Natl Acad Sci 1989; 86:1568–1572.

    Article  PubMed  CAS  Google Scholar 

  47. Meisenhelder J, Suh PG, Rhee SG, Hunter T. Phospholipase C-γ is a substrate for the PDGF and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 1989; 57: 1109–1122.

    Article  PubMed  CAS  Google Scholar 

  48. Anderson NG, Mailer JL, Tonks NK, Sturgill TW. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990; 343:651–653.

    Article  PubMed  CAS  Google Scholar 

  49. Ellis C, Moran M, McCormick F, Pawson T. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 1990; 343:377–381.

    Article  PubMed  CAS  Google Scholar 

  50. Molloy CJ, Bottaro DP, Fleming TP, Marshall MS, Gibbs JB, Aaronson SA. PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature 1989; 342:711–714.

    Article  PubMed  CAS  Google Scholar 

  51. Courtneidge SA, Heber A. An 81 kD protein complexed with middle T antigen and pp60c-src A possible phosphatidylinositol kinase. Cell 1987; 50:1031–1037.

    Article  PubMed  CAS  Google Scholar 

  52. Kaplan DR, Whitman M, Schaffhausen B, et al. Common elements in growth factor stimulation and oncogenic transformation: 85 kD phosphoprotein and phosphatidylinositol kinase activity. Cell 1987; 50:1021–1029.

    Article  PubMed  CAS  Google Scholar 

  53. Coughlin SR, Escobedo JA, Williams LT. Role of phosphatidylinositol kinase in PDGF receptor signal transduction. Science 1989; 243:1191–1194.

    Article  PubMed  CAS  Google Scholar 

  54. Tsao MS, Smith JD, Nelson KG, Grisham JW. A diploid epithelial cell line from normal adult rat liver with phenotypic properties of “oval” cells. Exp Cell Res 1984; 154:38–52.

    Article  PubMed  CAS  Google Scholar 

  55. McCune BK, Earp HS. EGF-dependent suppression of epidermal growth factor receptor autophosphorylation in liver epithelial cells is transient and is not due to activation of protein kinase C. J Biol Chem (in press).

    Google Scholar 

  56. Earp HS, Austin KS, Blaisdell J, et al. Epidermal growth factor (EGF) stimulates EGF receptor synthesis. J Biol Chem 1986; 261:4777–4780.

    PubMed  CAS  Google Scholar 

  57. Earp HS, Hepler JR, Petch LA, et al. Epidermal growth factor (EGF) and hormones stimulate phosphoinositide hydrolysis and increase EGF receptor protein synthesis and mRNA levels in rat liver epithelial cells. J Biol Chem 1988; 263:13868–13874.

    PubMed  CAS  Google Scholar 

  58. Clark AJL, Ishii S, Richert N, Merlino GT, Pastan I. Epidermal growth factor regulates the expression of its own receptor. Proc Natl Acad Sci 1985; 82:8374–8378.

    Article  PubMed  CAS  Google Scholar 

  59. Kudlow JE, Cheung CYM, Bjorge JD. Epidermal growth factor stimulates the synthesis of its own receptor in a human breast cancer cell line. J Biol Chem 1986; 261: 4134–4138

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Earp, S. et al. (1991). The Epidermal Growth Factor Receptor: Control of Synthesis and Signaling Function. In: Schomberg, D.W. (eds) Growth Factors in Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3162-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3162-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7819-1

  • Online ISBN: 978-1-4612-3162-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics