Skip to main content

Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 20))

Abstract

The soil organic matter (SOM) pool encompasses plant, animal, and microbial residues in all stages of decay and a diversity of heterogeneous organic substances intimately associated with inorganic soil components. The soil microbiota and fine roots may also be considered part of the SOM pool. The turnover of the different SOM components varies continuously due to the complex interaction of biological, chemical, and physical processes in soil. The complexity of SOM and its importance to soil fertility have challenged generations of soil scientists, and numerous studies, of which some date back more than two centuries (see historical review in Kononova, 1961), have covered a vast array of aspects of SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, T. McM. 1980. Macro organic matter content of some Northern Ireland soils.Record Agric. Res28: 1–11

    Google Scholar 

  • Adams, TMM 1982. The effects of agronomy on C and N distribution in soil organo-mineral fractions.J. Agric. Sci. Camb98: 335–342

    Article  CAS  Google Scholar 

  • Adams, W.A., and V.I. Stewart. 1969. The effect of ultrasonic dispersion on silurian shale particles. Soil Sci. 108: 227–228

    Article  Google Scholar 

  • Ahl, C. 1984. Veränderungen der Art und Menge der organischen Substanz in der Ackerkrume von Langzeit-Feldversuchen, gemessen an einigen physikalischen und chemischen Parametern. Ph.D. thesis, Georg-August-Universität, Göttingen, Germany.

    Google Scholar 

  • Ahl, C., H.-J. Altemüller, and H. Söchtig. 1983. Einfluss von Bodentyp, Standort und pflanzenbaulichen Massnahmen auf den Anteil organicher Substanz in verschiedenen Mikroaggregatgrössenklassen am Gesamtboden.Mitteilgn. Dtsch. Bodenkundl. Gesellsch38: 177–182

    Google Scholar 

  • Ahl, C., H.-J. Altemüller, and H. Söchtig. 1985. Die Tonverteilung auf verschiedene Aggregatgrössenfraktionen des Bodens in Abhängigheit von der organischen Düngung.Mitteilgn. Dtsch. Bodenkundl. Gesellsch43: 325–329

    Google Scholar 

  • Ahmed, M., and J.M. Oades. 1984. Distribution of organic matter and adenosine triphosphate after fractionation of soils by physical procedures.Soil Biol. Biochem16: 465–470

    Article  CAS  Google Scholar 

  • Allison, F.E., M.S. Sherman, and L.A. Pinck. 1949. Maintenance of soil organic matter: I. Inorganic soil colloid as a factor in retention of carbon during formation of humus.Soil Sci68: 463–478

    Article  CAS  Google Scholar 

  • Amato, M., and J.N. Ladd. 1980. Studies of nitrogen immobilization and mineralization in calcareous soils-V. Formation and distribution of isotope-labelled biomass during decomposition of 14C- and 15N-labelled plant material.Soil Biol. Biochem12: 405–411

    Article  CAS  Google Scholar 

  • Amato, M., J.N. Ladd, A. Ellington, G. Ford, J.E. Mahoney, A.C. Taylor, and D. Walsgott. 1987. Decomposition of plant material in Australian soils. IV. Decompositionin situof 14C- and 15N-labelled legume and wheat materials in a range of Southern Australian soils.Aust. J. Soil Res25: 95–105

    Article  CAS  Google Scholar 

  • Anderson, D.W., and E.A. Paul. 1984. Organo-mineral complexes and their study by radiocarbon dating.Soil Sci. Soc. Amer. J48: 298–301

    Article  CAS  Google Scholar 

  • Anderson, D.W., S. Saggar, J.R. Bettany, and J.W.B. Stewart. 1981. Particle size fractions and their use in studies of soil organic matter: I. The nature and distribution of forms of carbon, nitrogen and sulfur.Soil Sci. Soc. Amer. J45: 767–772

    Article  CAS  Google Scholar 

  • Anderson, T.H., and K.H. Domsch. 1989. Der Einfluss des Bodengefüges auf mikrobielle Stoffwechselleistungen.Mitteilgn. Dtsch. Bodenkundl. Gesellsch59: 523–528

    Google Scholar 

  • Andreux, F., S. Bruckert, A. Correa, and B. Souchier. 1980. Sur une méthode de fractionnement physique et chimique des agrégats des sols: origines possibles de la matière organique des fractions obtenues.C. R. Acad. Sc. Paris, Série D291: 381–384

    Google Scholar 

  • Angers, D.A., and G.R. Mehuys. 1990. Barley and alfalfa cropping effects on carbohydrate contents of a clay soil and its size fractions.Soil Biol. Biochem22: 285–288

    Article  CAS  Google Scholar 

  • Armour, J.D., G.S.P. Ritchie, and A.D. Robson. 1990. Extractable zinc in particle size fractions of soils from Western Australia and Queensland.Aust J. Soil Res28: 387–397

    Article  CAS  Google Scholar 

  • Arshad, M.A., and L.E. Lowe. 1966. Fractionation and characterization of naturally occurring organo-clay complexes.Soil Sci. Soc. Amer. Proc30: 731–735

    Article  CAS  Google Scholar 

  • Atchley, A.A., L.A. Crum. 1988. Acoustic cavitation and bubble dynamics. pp. 1–64. In K.S. Suslick (ed.). Ultrasound: Its Chemical, Physical and Biological Effects. VCH Publishers, New York, USA.

    Google Scholar 

  • Baldock, J. A., J.M. Oades, A.M. Vassallo, and M.A. Wilson. 1989. Incorporation of uniformly labelled13C-glucose carbon into the organic fraction of a soil. Carbon balance and CP/MAS13C NMR measurements.Aust. J. Soil Res27: 725–746

    Article  CAS  Google Scholar 

  • Baldock, J.A., J.M. Oades, A.M. Vassallo, and M.A. Wilson. 1990. Solid CP/MAS13C N.M.R. analysis of particle size and density fractions of a soil incubated with uniformly labelled13C-glucose.Aust. J. Soil Res28: 193–212

    Article  CAS  Google Scholar 

  • Balesdent, J., A. Mariotti, and B. Guillet. 1987. Natural13C abundance as a tracer for studies of soil organic matter dynamics.Soil Biol. Biochem19: 25–30

    Article  CAS  Google Scholar 

  • Balesdent, J., G.H. Wagner, and A. Mariotti. 1988. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance.Soil Sci. Soc. Amer. J52: 118–124

    Article  CAS  Google Scholar 

  • Barkoff, E. 1960. Über die Anwendung von Ultraschall zur Steigerung der Reaktionsgeschwindigkeit und zum Dispergieren des Bodens bei Bodenanalytischen Arbeiten.J. Sci. Agric. Soc. Finland32: 179–185

    CAS  Google Scholar 

  • Bernhard-Reversat, F. 1981. Participation of light and organo-mineral fractions of soil organic matter in nitrogen mineralization in a Sahelian savanna soil.Zbl. Bakt. II. Abt136: 281–290

    CAS  Google Scholar 

  • Bonde, T.A., B.T. Christensen, and C.C. Cerri. 1992. Dynamics of soil organic matter as reflected by naturall3C abundance in particle size fractions of forested and cultivated oxisols organic matter.Soil Biol. Biochem23: 275–277

    Article  Google Scholar 

  • Bourget, S.J. 1968. Ultrasonic vibration for particle-size analyses.Can. J. Soil Sci48: 372–373

    Article  Google Scholar 

  • Braunack, M.V., and A.R. Dexter. 1989. Soil aggregation in the seedbed: A review. I. Properties of aggregates and beds of aggregates. Soil Tillage Res. 14: 259–279

    Article  Google Scholar 

  • Broersma, K., and L.M. Lavkulich. 1980. Organic matter distribution with particle-size in surface horizons of some sombric soils in Vancouver Island.Can. J. Soil Sci60: 583–586

    Article  Google Scholar 

  • Bruckert, S., and G. Kilbertus. 1980. Fractionnement et analyse des complexes organo mineraux de sols bruns et de chernozems.Plant Soil57: 271–295

    Article  CAS  Google Scholar 

  • Busacca, A.J., J.R. Aniku., and M.J. Singer. 1984. Dispersion of soils by an ultrasonic method that eliminates probe contact.Soil Sci. Soc. Amer. J48: 1125–1129

    Article  CAS  Google Scholar 

  • Cameron, R.S., and A.M. Posner. 1979. Mineralisable organic nitrogen in soil fractionated according to particle size.J. Soil Sci30: 565–577

    Article  CAS  Google Scholar 

  • Catroux, G., and M. Schnitzer. 1987. Chemical, spectroscopic, and biological characteristics of the organic matter in particle size fractions separated from an Aquoll.Soil Sci. Soc. Amer. J51: 1200–1207

    Article  CAS  Google Scholar 

  • Cerri, C., C. Feller, J. Balesdent, R. Victoria, and A. Plenecassagne. 1985. Application du tracage isotopique naturel en13C, a létude de la dynamique de la matiere organique dans les sols.C. R. Acad. Sc. Paris, Serie II300: 423–428

    Google Scholar 

  • Cheshire, M.V., and C.M. Mundie. 1981. The distribution of labelled sugars in soil particle size fractions as a means of distinguishing plant and microbial carbohydrate residues.J. Soil Sci32: 605–618

    Article  CAS  Google Scholar 

  • Cheshire, M.V., and C.M. Mundie. 1990. Organic matter contributed to soil by plant roots during the growth and decomposition of maize.Plant Soil121: 107–114

    Article  CAS  Google Scholar 

  • Cheshire, M.V., B.T. Christensen, and L.H. Sørensen. 1990. Labelled and native sugars in particle-size fractions from soils incubated with14C straw for 6 to 18 years.J. Soil Sci41: 29–39

    Article  CAS  Google Scholar 

  • Chichester, F.W. 1969. Nitrogen in soil organo-mineral sedimentation fractions. Soil Sci. 107: 356–363

    Article  CAS  Google Scholar 

  • Chichester, F.W. 1970. Transformations of fertilizer nitrogen in soil. II. Total and NI5-labelled nitrogen of soil organo-mineral sedimentation fractions.Plant Soil33: 437–456

    Article  CAS  Google Scholar 

  • Chiou, C.T., J-F. Lee, and S.A. Boyd. 1990. The surface area of soil organic matter.Environ. Sci. Technol24: 1164–1166

    Article  CAS  Google Scholar 

  • Christensen, B.T. 1985. Carbon and nitrogen in particle size fractions isolated from Danish arable soils by ultrasonic dispersion and gravity-sedimentation.Acta Agric. Scand35: 175–187

    Article  CAS  Google Scholar 

  • Christensen, B.T. 1986. Straw incorporation and soil organic matter in macro- aggregates and particle size separates.J. Soil Sci37: 125–135

    Article  Google Scholar 

  • Christensen, B.T. 1987a. Decomposability of organic matter in particle size fractions from field soils with straw incorporation.Soil Biol. Biochem19: 429–435

    Article  Google Scholar 

  • Christensen, B.T. 1987b. Use of particle size fractions in soil organic matter studies. Intecol Bull. 15: 113–123

    Google Scholar 

  • Christensen, B.T. 1988. Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions.Biol. Fertil. Soils5: 304–307

    Article  Google Scholar 

  • Christensen, B.T., and S. Bech-Andersen. 1989. Influence of straw disposal on distribution of amino acids in soil particle size fractions.Soil Biol. Biochem21: 35–40

    Article  CAS  Google Scholar 

  • Christensen, B.T., and L.H. Sørensen. 1985. The distribution of native and labelled carbon between soil particle size fractions isolated from long-term incubation experiments.J. Soil Sci36: 219–229

    Article  CAS  Google Scholar 

  • Christensen, B.T., and L.H. Sørensen. 1986. Nitrogen in particle size fractions of soils incubated for five years with15N-ammonium and14C-hemicellulose.J. Soil Sci37: 241–247

    Article  CAS  Google Scholar 

  • Christensen, B.T., F. Bertelsen, and G. Gissel-Nielsen. 1989. Selenite fixation by soil particle-size separates.J. Soil Sci40: 641–647

    Article  CAS  Google Scholar 

  • Christensen, S., and B.T. Christensen. 1991. Organic matter available for denitrification in different soil fractions: effect of freeze/thaw cycles and straw disposal.J. Soil Sci42: 637–647

    Article  CAS  Google Scholar 

  • Christenson, D.R., and E.C. Doll. 1973. Release of magnesium from soil clay and silt fractions during cropping.Soil Sci. 116:59–63

    Article  CAS  Google Scholar 

  • Churchman, G.J., and K.R. Tate. 1986. Aggregation of clay in six New Zealand soil types as measured by disaggregation procedures.Geoderma 37: 207–220

    Article  CAS  Google Scholar 

  • Coleman, D.C., J.M. Oades, and G. Uehara (eds.) 1989.Dynamics of Soil Organic Matter in Tropical Ecosystems. NifTAL Project, University of Hawaii at Manoa, USA

    Google Scholar 

  • Cooley, J.H. (ed.) 1987.Soil Organic Matter Dynamics and Soil Productivity. Intecol Bull. 15. The International Association for Ecology, Athens, Georgia, USA

    Google Scholar 

  • Curtin, D., P.M. Huang, and H.P.W. Rostad. 1987. Components and particle size distribution of soil titratable acidity.Soil Sci. Soc. Amer. J51: 332–336

    Article  CAS  Google Scholar 

  • Dalal, R.C., and R.J. Henry. 1988. Cultivation effects on carbohydrate contents of soil and soil fractions.Soil Sci. Soc. Amer. J52: 1361–1365

    Article  Google Scholar 

  • Dalal, R.C., and R.J. Mayer. 1986a. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. I. Overall changes in soil properties and trends in winter cereal yields.Aust. J. Soil Res24: 265–279

    Article  CAS  Google Scholar 

  • Dalal, R.C., and R.J. Mayer. 1986b. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. II. Total organic carbon and its rate of loss from the soil profile.Aust. J. Soil Res24: 281–292

    Article  CAS  Google Scholar 

  • Dalal, R.C. R.J Mayer 1986c Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. III. Distribution and kinetics of soil organic carbon in particle-size fractions.Aust. J. Soil Res 24:293–300

    Article  CAS  Google Scholar 

  • Dalal, R.C. R.J. Mayer. 1986d. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. IV. Loss of organic carbon from different density fractions.Aust. J. Soil Res24: 301–309

    Article  CAS  Google Scholar 

  • Dalal, R.C., and R.J. Mayer. 1987. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in Southern Queensland. VI. Loss of total nitrogen from different particle-size and density fractions.Aust. J. Soil Res 25: 83–93

    Article  CAS  Google Scholar 

  • Dong, A., G.V. Simsiman, and G. Chesters. 1983. Particle-size distribution and phosphorus levels in soil, sediment, and urban dust and dirt samples from the Menomonee River Watershed, Wisconsin, U.S.A.Water Res. 17: 569–577

    Article  CAS  Google Scholar 

  • Dong, A., G.V. Simsiman, and G. Ghesters. 1985. Release of phosphorus and metals from soils and sediments during dispersion.Soil Sci. 139:97–99

    Article  CAS  Google Scholar 

  • Dormaar, J.F. 1983. Chemical properties of soil and water-stable aggregates after sixty-seven years of cropping to spring wheat.Plant Soil 75: 51–61

    Article  CAS  Google Scholar 

  • Drake, E.H., and H.L. Motto. 1982. An analysis of the effect of clay and organic matter content on the cation exchange capacity of New Jersey soils.Soil Sci. 133:281–288

    Article  Google Scholar 

  • Dudas, M.J., and S. Pawluk. 1970. Naturally occurring organo-clay complexes of orthic black chernozems.Geoderma 3: 5–17

    Article  Google Scholar 

  • Dzurec, R.S., T.W. Boutton, M.M. Caldwell, and B.N. Smith. 1985. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Curlew Valley, Utah.Oecologia 66: 17–24

    Article  Google Scholar 

  • Edwards, A.P., and J.M. Bremner. 1964. Use of sonic vibration for separation of soil particles.Can. J. Soil Sci 44:366

    Article  Google Scholar 

  • Edwards, A.P., and J.M. Bremner. 1965. Dispersion of mineral colloids in soils using cation exchange resins.Nature 205: 208–209

    Article  CAS  Google Scholar 

  • Edwards, A.P., and J.M. Bremner. 1967. Dispersion of soil particles by sonic vibration.J.Soil Sci. 18:47–63

    Article  CAS  Google Scholar 

  • Elliott, E.T. 1986. Aggregate structure and carbon, nitrogen, and phosphorous in native and cultivated soils.Soil Sci. Soc. Amer. J 50: 627–633

    Article  Google Scholar 

  • Elliott, E.T. and C.A. Cambardella. 1991. Physical separation of soil organic matter.Agric. Ecosyst. Environ 34: 407–419

    Article  Google Scholar 

  • Elonen, P . 1971. Particle-size analysis of soil.Acta Agralia Fennica no 122

    Google Scholar 

  • Elustondo, J. D.A. Angers, M.R. Laverdiere, A. N’Dayegamiye. 1990. Étude comparative de l’ágrégation et de la matiére organique associée aux fractions granulométriques de sept sols sous culture de maïs ou en prairie.Can. J. Soil Sci 70: 395–402

    Article  Google Scholar 

  • Emerson, W.W. 1959. The structure of soil crumbs.J. Soil Sci 10: 235–244

    Article  CAS  Google Scholar 

  • Emerson, W.W. 1971. Determination of the contents of clay-sized particles in soils.J. Soil Sci 22: 50–59

    Article  Google Scholar 

  • Emerson, W.W. R.C. Forster J.M. Oades. 1986. Organo-mineral complexes in relation to soil aggregation and structure,pp. 521–548. In P.M. Huang M. Schnitzer (eds.).Interactions of Soil Minerals with Natural Organics and Microbes. SSSA, Madison, WI., USA.

    Google Scholar 

  • Essington, M.E., and S.V. Mattigod. 1990. Element partitioning in size- and density-fractionated sewage sludge and sludge-amended soil.Soil Sci. Soc. Amer. J 54: 385–394

    Article  Google Scholar 

  • Evans, K.M., R.A. Gill, and P.W.J. Robotham. 1990. The PAH and organic content of sediment particle size fractions.Water Air Soil Poll 51: 13–31

    Article  CAS  Google Scholar 

  • Feller, C. 1979. Une méthode de fractionnement granulométrique de la matière organique des sols.Cahier ORSTOM, serie Pedologie 17: 339–346

    Google Scholar 

  • Filip, Z. 1977. Einfluss von Tonmineralen auf die mikrobielle Ausnutzung der kohlenstoffhaltigen Substanzen und Bildung der Biomasse.Ecol. Bull. (Stockh.) 25: 173–179

    CAS  Google Scholar 

  • Fog, K. 1988. The effect of added nitrogen on the rate of decomposition of organic matter.Biol. Rev 63: 433–462

    Article  Google Scholar 

  • Ford, G.W. D.J. Greenland. 1968. The dynamics of partly humified organic matter in some arable soils.Trans. 9th Int. Congr. Soil Sci., Adelaide, 2: 403–410

    CAS  Google Scholar 

  • Ford, G.W., D.J. Greenland, and J.M. Oades. 1969. Seperation of the light fraction from soils by ultrasonic dispersion i halogenated hydrocarbons containing a surfactant.J. Soil Sci 20: 291–296

    Article  CAS  Google Scholar 

  • Förstner U. 1985. Chemical forms and reactivities of metals in sediments. pp. 1–30. In R. Leschber R.D. Davies P. L’Hermite (eds.)Chemical Methods for Assessing Bio-Available Metals in Sludges and Soils. Elsevier Applied Science Publ., London, UK

    Google Scholar 

  • Francis, C.W. 1973. Adsorption of polyvinylpyrrolidone on reference clay minerals.Soil Sci. 115:40–54

    Article  CAS  Google Scholar 

  • Garwood, E.A., C.R. Clement, and T.E. Williams. 1972. Leys and soil organic matter III. The accumulation of macro-organic matter in the soil under different swards.J. agric. Sci. Camb 78: 333–341

    Article  Google Scholar 

  • Gee, G.W. J.W. Bauder. 1986. Particle-size analysis, pp. 383– 441. In A. Klute (ed.),Methods of Soil Analysis, Part 1, 2nd Edition. ASA and SSSA Publ., Madison, WI, USA

    Google Scholar 

  • Genrich, D.A., and J.M. Bremner. 1972a. A reevaluation of the ultrasonic- vibration method of dispersing soils.Soil Sci. Soc. Amer. Proc 36: 944–947

    Article  Google Scholar 

  • Genrich, D.A., and J.M. Bremner. 1972b. Effect of probe condition on ultrasonic dispersion of soils by probe-type ultrasonic vibrators.Soil Sci. Soc. Amer. Proc 36: 975–976

    Article  Google Scholar 

  • Genrich, D.A., and J.M. Bremner. 1974. Isolation of soil particle-size fractions.Soil Sci. Soc. Amer. Proc 38: 222–225

    Article  Google Scholar 

  • Gerzabek, M.H., and S.M. Ullah. 1988. Über die Verteilung von137Cs in den Korngrössenfraktionen zweier kontaminierter Böden.Die Bodenkultur 39: 293–297

    Google Scholar 

  • Greenland, D.J. 1965a. Interaction between clays and organic compounds in soils. Part I. Mechanisms of interaction between clays and defined organic compounds.Soils Fert. 28:415–425

    Google Scholar 

  • Greenland, D.J. 1965b. Interaction between clays and organic compounds in soils. Part II. Adsorption of soil organic compounds and its effect on soil properties.Soils Fert. 28:521–532

    CAS  Google Scholar 

  • Greenland, D.J. 1971. Changes in the nitrogen status and physical condition of soils under pastures, with special reference to the maintenance of the fertility of Australian soils used for growing wheat.Soils Fert. 34:237–251

    Google Scholar 

  • Greenland, D.J., and G.W. Ford. 1964. Seperation of partially humified organic materials from soils by ultrasonic dispersion.Trans. 8th Int. Congr. Soil Sci., Bucharest, 3: 137–148

    Google Scholar 

  • Gregorich, E.G. 1989.The effects of texture on the stabilization and physical protection of organic matter in soil. Ph.D. thesis, The Faculty of Graduate Studies, University of Guelph, Ontario, Canada

    Google Scholar 

  • Gregorich, E.G., R.G. Kachanoski, and R.P. Voroney. 1988. Ultrasonic dispersion of aggregates: Distribution of organic matter in size fractions.Can. J. Soil. Sci 68: 395–403

    Article  Google Scholar 

  • Gregorich, E.G., R.G. Kachanoski, and R.P. Voroney. 1989. Carbon mineralization in soil size fractions after various amounts of aggregate disruption.J. Soil Sci 40: 649–659

    Article  CAS  Google Scholar 

  • Gregorich, E.G., R.P. Voroney, and R.G. Kachanoski. 1991. Turnover of carbon through the microbial biomass in soils with different textures.Soil Biol. Biochem 23: 799–805

    Article  Google Scholar 

  • Hamblin, A.P. 1977. Structural features of aggregates in some East Anglian silt soils.J. Soil Sci 28: 23–28

    Article  CAS  Google Scholar 

  • Hamdy, A.A., and G. Gissel-Nielsen. 1977. Fixation of selenium by clay minerals and iron oxides.Z. Pflanzenernaehr. Bodenkd 140: 63–70

    Article  CAS  Google Scholar 

  • Healy, W.B., and G.G.C. Claridge. 1974. Chemical properties of soil particle size fractions separated by ultrasonic dispersion.New Zealand J. Sci 17: 493–501

    CAS  Google Scholar 

  • Hinds, A.A., and L.E. Lowe. 1980a. The use of an ultrasonic probe in soil dispersion and in the bulk isolation of organo-mineral complexes.Can. J. Soil Sci 60: 389–392

    Article  Google Scholar 

  • Hinds, A.A., and L.E. Lowe. 1980b. Distribution of carbon, nitrogen, sulphur and phosphorus in particle-size separates from gleysolic soils.Can. J. Soil Sci 60: 783–786

    Article  CAS  Google Scholar 

  • Hinds, A.A., and L.E. Lowe. 1980c. Dispersion and dissolution effects during ultrasonic dispersion of gleysolic soils in water and in electrolytes.Can. J. Soil Sci 60: 329–335

    Article  CAS  Google Scholar 

  • Huang P.M. M. Schnitzer (eds.) 1986.Interactions of Soil Minerals with Natural Organics and Microbes SSSA Publ. Inc. Madison, WI, USA.

    Google Scholar 

  • Huang P.M. R. Grover, R.B. McKercher 1984Components and particle size fractions involved in atrazine adsorption by soils.Soil Sci 138:20–24

    Article  Google Scholar 

  • IAEA. 1977.Soil organic Matter Studies, Vol. I,II. International Atomic Energy Agency, Vienna, Austria.

    Google Scholar 

  • Janzen, H.H. 1987. Soil organic matter characteristics after long-term cropping to various spring wheat rotations.Can. J. Soil Sci 67: 845–856

    Article  Google Scholar 

  • Jenkinson, D.S. 1977. Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon froml4C labeled ryegrass decomposing under field conditions.J. Soil Sci 28: 424–434

    Article  CAS  Google Scholar 

  • Jenkinson, D.S. J.N.Ladd. 1981 Microbial biomass in soil: Measurement and turnover. pp. 415–471. In E.A. PaulJ.N.Ladd (eds.),Soil Biochemistry, vol. 5 Marcel Dekker New York, USA.

    Google Scholar 

  • Jenkinson, D.S., D.S. Powlson, and R.W.M. Wedderburn. 1976. The effects of biocidal treatments on metabolism in soil—III. The relationship between soil biovolume, measured by optical microscopy, and the flush of decomposition caused by fumigation.Soil Biol. Biochem 8: 189–202

    Article  CAS  Google Scholar 

  • Jenkinson, D.S., P.B.S. Hart, J.H. Rayner, and L.C. Parry. 1987. Modelling the turnover of organic matter in long-term experiments at Rothamsted.Intecol. Bull 15: 1–8

    Google Scholar 

  • Jensen, E.S., B.T. Christensen, and L.H. Sørensen. 1989. Mineral-fixed ammonium in clay- and silt-size fractions of soils incubated with15N-ammonium sulphate for five years.Biol. Fertil. Soils8: 298–302

    Article  CAS  Google Scholar 

  • Jensen, V. A. Kjøller L.H. Sørensen (eds.) 1986.Microbial Communities in Soil Elsevier Applied Sci. Publ., London, UK

    Google Scholar 

  • Kaila, A. 1967. Potassium status in different particle size fractions of some Finnish soils.J. Sci. Agric. Soc. Finland39: 45–56

    Google Scholar 

  • Kaila, A., and R. Ryti. 1968. Calcium, magnesium and potassium in clay, silt and fine sand fractions of some Finnish soils.J. Sci. Agric. Soc. Finland 40: 1–13

    CAS  Google Scholar 

  • Kanazawa, S., and Z. Filip. 1986. Distribution of microorganisms, total biomass, and enzyme activities in different particles of Brown soil.Microb. Ecol 12: 205–215

    Article  CAS  Google Scholar 

  • Khan, A. 1979. Distribution of DTPA-extractable Fe, Zn and Cu in soil particle- size fractions.Commun. Soil Sci. Plant Anal 10: 1211–1218

    Article  CAS  Google Scholar 

  • Koenigs, F.F.R. 1978. Comments on the paper by P.F. North: Towards an absolute measurement of soil structural stability using ultrasound.J. Soil Sci29: 117–120

    Article  Google Scholar 

  • Kononova, M.M. 1961.Soil Organic Matter—Its Nature, Its Role in Soil Formation and in Soil Fertility Pergamon Press Oxford, UK

    Google Scholar 

  • Kowalenko, C.G., and G.J. Ross. 1980. Studies on the dynamics of “recently” clay-fixed NH4 + usingl5N.Can. J. Soil Sci60: 61–70

    Article  CAS  Google Scholar 

  • Kyuma, K, A. Hussain, and K. Kawaguchi. 1969. The nature of organic matter in soil organo-mineral complexes.Soil Sci. Plant Nutr 15: 149–155

    CAS  Google Scholar 

  • Ladd, J.N., and M. Amato. 1980. Studies of nitrogen immobilization and mineralization in calcareous soils-IV. Changes in the organic nitrogen of light and heavy subfractions of silt- and fine clay-size particles during nitrogen turnover.Soil. Biol. Biochem 12: 185–189

    Article  CAS  Google Scholar 

  • Ladd, J.N., J.W. Parsons, and M. Amato. 1977a. Studies of nitrogen immobilization and mineralization in calcareous soils-I. Distribution of immobilized nitrogen amongst soil fractions of different particle size and density.Soil Biol. Biochem 9: 309–318

    Article  CAS  Google Scholar 

  • Ladd, J.N., J.W. Parsons, and M. Amato. 1977b. Studies of nitrogen immobilization and mineralization in calcareous soils-II. Mineralization of immobilized nitrogen from soil fractions of different particle size and density.Soil Biol. Biochem 9: 319–325

    Article  CAS  Google Scholar 

  • Ladd, J.N. M.Amato J.W. Parsons. 1977c Studies of nitrogen immobilization and mineralization in calcareous soils. III. Concentration and distribution of nitrogen derived from the soil biomass. pp.301–311. InSoil Organic Matter Studies, vol. 1. IAEA, Vienna, Austria

    Google Scholar 

  • Ladd, J.N. M. Amato, J.M. Oades. 1985. Decomposition of plant material in Australian soils. III. Residual organic and microbial biomass C and N from isotope-labelled legume material and soil organic matter, decomposing under field conditions.Aust. J. Soil Res 23: 603–611

    Article  CAS  Google Scholar 

  • Lagaly, G. 1984. Clay-organic interactions.Phil. Trans. R. Soc. Lond. A 311: 315–332

    Article  CAS  Google Scholar 

  • Leinweber P 1988.Erfassung und Charakterisierung organisch-mineralischer Komplexe (OMK) und ihrer Differenzierung in Böden von Dauerveldversuchen der DDR Ph.D. thesis, Diss. A., Wilhelm-Pieck-Universität, Rostock, Germany

    Google Scholar 

  • Leinweber, P., and G. Reuter. 1988. Menge und Qualität organisch-mineralischer Komplexe in Böden unterschiedlicher Standorte.Tag.-Ber. Akad. Landwirtsch.- Wiss DDR. 269: 223–235

    Google Scholar 

  • Lemieux, G.J. 1964. Efficiency of various shakers in the particle-size analysis of soils.Can. J. Soil Sci 44: 228–231

    Article  Google Scholar 

  • Leuschner, H.H., R. Aldag, and B. Meyer. 1981. Dichte-Fraktionierung des Humus in Ap-Horizonten von Sandböden mit unterschiedlicher Körnung und Nutzungs-Vorgeschichte.Mitteilgn. Dtsch. Bodenkundl. Gesellsch32: 583–592

    Google Scholar 

  • Lichtfuss, R., and G. Brümmer. 1981. Gehalte an Organischer Substanz, Schwermetallen und Phosphor in Dichtefraktionen von Fluvialen Unterwasserböden.Geoderma 25: 245–265

    Article  CAS  Google Scholar 

  • Livens, F.R., and M.S. Baxter. 1988. Particle size and radionuclide levels in some West Cumbrian soils.Sci. Tot. Environ 70: 1–17

    Article  CAS  Google Scholar 

  • Lowe, L.E., and A.A. Hinds. 1983. The mineralization of nitrogen and sulphur from particle size separates of gleysolic soils.Can. J. Soil Sci 63: 761–766

    Article  CAS  Google Scholar 

  • Lynch, D.L., L.M. Wright L.J. Cotnoir, jr 1956.The adsorption of carbohydrates and related compounds on clay minerals.Soil Sci. Soc. Amer. Proc 20: 6–9

    Article  CAS  Google Scholar 

  • Malone C.R. M.B. Swartout. 1969. Size, mass, and caloric content of particulate organic matter in old-field and forest soils.Ecology 50:395–399

    Article  CAS  Google Scholar 

  • Martin, A., A. Mariotti, J. Balesdent, P. Lavelle, and R. Vuattoux. 1990. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements.Soil Biol. Biochem 22: 517–523

    Article  Google Scholar 

  • McGill, W.B., and E.A. Paul. 1976. Fractionation of soil and15N nitrogen to separate the organic and clay interactions of immobilized N.Can. J. Soil Sci56: 203–212

    Article  CAS  Google Scholar 

  • McGill, W.B., J.A. Shields, and E.A. Paul. 1975. Relation between carbon and nitrogen turnover in soil organic fractions of microbial origin.Soil Biol. Biochem 7: 57–63

    Article  CAS  Google Scholar 

  • McKeague, J.A. 1971. Organic matter in particle-size and specific gravity fractions of some Ah horizons.Can. J. Soil Sci 51: 499–505

    Article  CAS  Google Scholar 

  • McTainsh, G.H., and N.C. Duhaylungsod. 1989. Aspects of soil particle-size analysis in Australia.Aust. J. Soil Res 27: 629–636

    Article  Google Scholar 

  • Molloy, L.F., and T.W. Speir. 1977. Studies on a climosequence of soils in tussock grasslands 12. Constituents of the soil light fraction.New Zealand J. Sci 20: 167–177

    CAS  Google Scholar 

  • Molloy, L.F., B.A. Bridger, and A. Cairns. 1977. Studies on a climosequence of soils in tussock grasslands. 13. Structural carbohydrates in tussock leaves, roots and litter and in the soil light and heavy fractions.New Zealand J. Sci 20: 443–451

    CAS  Google Scholar 

  • Monnier, G., L. Turc, and C. Jeanson-Luusinang. 1962. Une méthode defractionnement densimétrique par centrifugation des matières organiques du sol.Ann. Agron 13: 55–63

    Google Scholar 

  • Morra, M.J R.R. Blank L.L. Freeborn B. Shafii. 1991.Size fractionation of soil organo-mineral complexes using ultrasonic dispersion.Soil Sci 152:294–303.

    Article  Google Scholar 

  • Murayama, S. 1981. Persistency and monosaccharide composition of polysaccharides of soil which received no plant materials for certain period under field conditions.Soil Sci. Plant Nutr 27: 463–475

    CAS  Google Scholar 

  • Murayama, S. 1984. Changes in the monosaccharide composition during the decomposition of straws under field conditions.Soil Sci. Plant Nutr 30: 367–381

    CAS  Google Scholar 

  • Murayama, S., M.V. Cheshire, C.M. Mundie, G.P. Sparling, and H. Shepherd. 1979. Comparison of the contribution to soil organic matter fractions, particularly carbohydrates, made by plant residues and microbial products.J.Sci. Food Agric 30: 1025–1034

    Article  CAS  Google Scholar 

  • Murphy, E.M., J.M. Zachara, and S.T. Smith. 1990. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds.Environ. Sci. Technol 24: 1507–1516

    Article  CAS  Google Scholar 

  • Nkedi-Kizza, P., P.S.C. Rao, and J.W. Johnson. 1983. Adsorption of diuron and 2,4,5-T on soil particle-size separates.J. Environ. Qual 12: 195–197

    Article  CAS  Google Scholar 

  • North. P.F. 1976. Towards an absolute measurement of soil structural stability using ultrasound.J. Soil Sci 27: 451–459

    Article  Google Scholar 

  • Oades, J.M. 1972. Studies on soil polysaccharides: III. Composition of polysaccharides in some Australian soils.Aust. J. Soil Res 10: 113–126

    Article  CAS  Google Scholar 

  • Oades, J.M. 1984. Soil organic matter and structural stability: mechanisms an implications for management.Plant Soil 76: 319–337

    Article  CAS  Google Scholar 

  • Oades, J.M. 1989. An introduction to organic matter in mineral soil. pp. 89–159. In: J.B. DixonS.B. Weed (eds.),Minerals in Soil Environments, Second Edition SSSA Publ. Inc. Madison, WI, USA

    Google Scholar 

  • Oades, J.M. and A.G. Waters. 1991. Aggregate hierarchy in soils.Aust. J. Soil Res 29: 815–828

    Article  Google Scholar 

  • Oades, J.M., A.M. Vassallo, A.G. Waters, and M.A. Wilson. 1987. Characterization of organic matter in particle size and density fractions from a red- brown earth by solid-state13C N.M.R.Aust. J. Soil Res 25: 71–82

    Article  CAS  Google Scholar 

  • Oades, J.M., A.G. Waters, A.M. Vasallo, M.A. Wilson, and G.P. Jones. 1988. Influence of management on the composition of organic matter in a red-brown earth as shown by13C nuclear magnetic resonance.Aust. J. Soil Res 26: 289–299

    Article  CAS  Google Scholar 

  • Parasher, C.D., and L.E. Lowe. 1970. Isolation of clay-size organo-mineral complexes from soils of the Lower Fraser Valley.Can. J. Soil Sci 50: 403–407

    Article  CAS  Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands.Soil Sci. Soc. Amer. J 51: 1173–1179

    Article  CAS  Google Scholar 

  • Paul, E.A. F.E. Clark. 1989.Soil Microbiology and BiochemistryAcademic Press Inc., San Diego, USA

    Google Scholar 

  • Paul, E.A., W.B. McGill. 1977. Turnover of microbial biomass, plant residues and soil humic constituents under field conditions, pp. 149–157. InSoil Organic Matter Studies, vol. 1. IAEA, Vienna, Austria

    Google Scholar 

  • Plewinsky, B., and R. Kamps. 1984. Sodium metatungstate, a new medium for binary and ternary density gradient centrifugation.Makromol. Chem 185: 1429–1439

    Article  CAS  Google Scholar 

  • Pritchard, D.T. 1974. A method for soil particle-size analysis using ultrasonic disaggregation.J. Soil Sci 25: 34–40

    Article  Google Scholar 

  • Ramsay, A.J. 1984. Extraction of bacteria from soil: Efficiency of shaking or ultrasonication as indicated by direct counts and autoradiography.Soil Biol. Biochem16: 475–481

    Article  Google Scholar 

  • Reuter, G., and P. Leinweber. 1988. Konzeption und Methodik der Untersuchung organischmineralischer Komplexe (OMK) in Böden.Tag.-Ber., Akad. Landwirtsch.-Wiss. DDR 269: 213–222

    Google Scholar 

  • Richter, M., I. Mizuno, S. Aranguez, and S. Uriarte. 1975. Densimetric fractionation of soil organo-mineral complexes.J. Soil Sci 26: 112–123

    Article  CAS  Google Scholar 

  • Saly, R. 1967. Use of ultrasonic vibration for dispersing soil samples.Soviet Soil Sci 2: 1547–1559

    Google Scholar 

  • Scharpenseel, H.W., K. Tsutsuki, P. Becker-Heidmann, and J. Freytag. 1986. Untersuchungen zur Kohlenstoffdynamik und Bioturbation von Mollisolen. Z.Pflanzenernaehr. Bodenk 149: 582–597

    Article  Google Scholar 

  • Scheffer, B . 1977. Stabilization of organic matter in sand mixed cultures. pp. 359–363. InSoil Organic Matter Studies Vol. II, IAEA, Vienna, Austria

    Google Scholar 

  • Schimel, D.S. 1986. Carbon and nitrogen turnover in adjacent grassland cropland ecosystems.Biogeochemistry 2: 345–357

    Article  CAS  Google Scholar 

  • Schlesinger, W.H. 1986. Changes in soil carbon storage and associated with disturbance and recovery, pp. 194–220 In J.R. Trabalka,D.E. Reichle (eds.)The Changing Carbon Cycle-A Global Analysis Springer- Verlag, New York, USA

    Google Scholar 

  • Schnitzer, M., and K.C. Ivarson. 1982. Different forms of nitrogen in particle size fractions separated from two soils.Plant Soil 69: 383–389

    Article  CAS  Google Scholar 

  • Schnitzer, M., and P. Schuppli. 1989a. The extraction of organic matter from selected soils and particle size fractions with 0.5 M NaOH and 0.1 M Na4P2O7 solutions.Can. J. Soil Sci 69: 253–262

    Article  Google Scholar 

  • Schnitzer, M., and P. Schuppli. 1989b. Method for the sequential extraction of organic matter from soils and soil fractions.Soil Sci. Soc. Amer. J 53: 1418–1424

    Article  CAS  Google Scholar 

  • Schnitzer, M., J.A. Ripmeester, and H. Kodama. 1988. Characterization of the organic matter associated with a soil clay.Soil Sci 145: 448–454

    Article  CAS  Google Scholar 

  • Schulten, H.R., and M. Schnitzer. 1990. Aliphatics in soil organic matter in fine-clay fractions.Soil Sci. Soc. Amer. J 54: 98–105

    Article  CAS  Google Scholar 

  • Seech, A.G., and E.G. Beauchamp. 1988. Denitrification in soil aggregates of different sizes.Soil Sci. Soc. Amer. J 52: 1616–1621

    Article  CAS  Google Scholar 

  • Shaymukhametov, M.S., N.A. Titova, L.S. Travnikova, and Y.M. Labenets. 1985. Use of physical fractionation methods to characterize soil organic matter.Soviet Soil Sci 16: 117–128

    Google Scholar 

  • Shiel, R.S. 1986. Variation in amounts of carbon and nitrogen associated with particle size fractions of soils from the Palace Leas meadow hay plots.J. Soil Sci 37: 249–257

    Article  Google Scholar 

  • Skjemstad, J.O., and R.C. Dalal. 1987. Spectroscopic and chemical differences in organic matter of two Vertisols subjected to long periods of cultivation.Aust. J. Soil Res 25: 323–335

    Article  CAS  Google Scholar 

  • Skjemstad, J.O., R.C. Dalal, and P.F. Barron. 1986. Spectroscopic investigations of cultivation effects on organic matter of Vertisols.Soil Sci. Soc. Amer. J 50: 354–359

    Article  CAS  Google Scholar 

  • Skjemstad, J.O., R.P. Le Feuvre, and R.E. Prebble. 1990. Turnover of soil organic matter under pasture as determined by 13C natural abundance.Aust. J. Soil Res 28: 267–276

    Article  CAS  Google Scholar 

  • Sollins, P., G. Spycher, and C.A. Glassman. 1984. Net nitrogen mineralization from light- and heavy-fraction forest soil organic matter.Soil Biol. Biochem 16: 31–37

    Article  CAS  Google Scholar 

  • Somasiri, S., S.Y. Lee, and P.M. Huang. 1971. Influence of certain pedogenic factors on potassium reserves of selected Canadian Prairie soils.Soil Sci. Soc. Amer. Proc 35: 500–505

    Article  CAS  Google Scholar 

  • Spycher, G., and J.L. Young. 1977. Density fractionation of water-dispersible soil organic-mineral particles.Commun. Soil Sci. Plant Anal 8: 37–48

    Article  Google Scholar 

  • Spycher, G., and J.L. Young. 1979. Water-dispersible soil organic-mineral particles: II. Inorganic amorphous and crystalline phases in density fractions of clay-size particles.Soil Sci. Soc. Amer. J 43: 328–332

    Article  CAS  Google Scholar 

  • Spycher, G., P. Sollins, and S. Rose. 1983. Carbon and nitrogen in the light fraction of a forest soil: Vertical distribution and seasonal patterns.Soil Sci 135: 79–87

    Article  CAS  Google Scholar 

  • Stevenson, F.J. E.T. Elliott, C.V. Cole, J. Ingram, J.M. Oades, C. Preston, P.J. Sollins. 1989. Methodologies for assessing the quantity and quality of soil organic matter, pp. 173–199. In D.C. Coleman, J.M. Oades, G. Uehara (eds.)Dynamics of Soil Organic Matter in Tropical Ecosystems NifTAL Project, University of Hawaii at Manoa, USA.

    Google Scholar 

  • Stevenson, I.L. 1958. The effect of sonic vibration on the bacterial plate count of soil.Plant Soil10 : 1–8

    Article  Google Scholar 

  • Stotzky, G 1986. Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses, pp. 305–428. In P.M. Huang, M. Schnitzer (eds.)Interactions of Soil Minerals with Natural Organics and Microbes SSSA Publ., Madison, WI, USA

    Google Scholar 

  • Stotzky, G., R.G. Burns. 1982. The soil environment: Clay-humus-microbe interactions, pp. 105–133. In R.G. Burns, J.H. Slater (eds.)Experimental Microbial Ecology Blackwell Sci. Publ., Oxford, UK

    Google Scholar 

  • Suslick, K.S. (ed.) 1988a.Ultrasound: Its Chemical, Physical and Biological Effects. VCH Publishers, Inc., New York, USA

    Google Scholar 

  • Suslick, K.S. 1988b. Homogeneous sonochemistry. pp. 123–163. In K.S. Suslick (ed.) Ultrasound: Its Chemical, Physical and Biological Effects.VCH Publishers, New York, USA.

    Google Scholar 

  • Suslick, K., and S. Doktycz. 1990. Sounding out new chemistry.New Scientist 3: 50–53

    Google Scholar 

  • Syers, J.K., R. Shah, and T.W. Walker. 1969. Fractionation of phosphorus in two alluvial soils and particle-size separates.Soil Sci 108: 283–289

    Article  CAS  Google Scholar 

  • Swift, M.J., O.W. Heal, and J.M. Anderson. 1979.Decomposition in Terrestial Ecosystems. Blackwell Sci. Publ., Oxford, UK

    Google Scholar 

  • Sørensen, L.H. 1967. Duration of amino acid metabolites formed in soils during decomposition of carbohydrates.Soil Sci 104: 234–241

    Article  Google Scholar 

  • Sørensen, L.H. 1972. Stabilization of newly formed amino acid metabolites in soil by clay minerals.Soil Sci 114: 5–11

    Article  Google Scholar 

  • Sørensen, L.H. 1975. The influence of clay on the rate of decay of amino acid metabolites synthesized in soils during decomposition of cellulose.Soil Biol. Biochem 7: 171–177

    Article  Google Scholar 

  • Sørensen, L.H. 1981. Carbon-nitrogen relationships during the humification of cellulose in soils containing different amounts of clay.Soil Biol. Biochem 13: 313–321

    Article  Google Scholar 

  • Sørensen, L.H. 1983. Size and persistence of the microbial biomass formed during the humification of glucose, hemicellulose, cellulose, and straw in soils containing different amounts of clay.Plant Soil 75: 121–130

    Article  Google Scholar 

  • Sørensen, L.H. 1987. Organic matter and microbial biomass in a soil incubated in the field for 20 years with14C-labelled barley straw.Soil Biol. Biochem 19: 39–42

    Article  Google Scholar 

  • Tan, K.H., and P.S. Troth. 1981. Increasing sensitivity of organic matter and nitrogen analysis using soil separates.Soil Sci. Soc. Am. J 45: 574–577

    Article  CAS  Google Scholar 

  • Tanner, C.B., and M.L. Jackson. 1947. Nomographs of sedimentation times for soil particles under gravity or centrifugal acceleration.Soil Sci. Soc. Amer. Proc 12: 60–65

    Article  Google Scholar 

  • Tate, K.R., and G.J. Churchman. 1978. Organo-mineral fractions of a climosequence of soils in New Zealand tussock grasslands.J. Soil Sci 29: 331–339

    Article  CAS  Google Scholar 

  • Theng, B.K.G., G.J. Churchman, and R.H. Newman. 1986. The occurrence of interlayer clay-organic complexes in two New Zealand soils.Soil Sci 142: 262–266

    Article  CAS  Google Scholar 

  • Theodorou, C. 1990. Nitrogen transformations in particle size fractions from a second rotation pine forest soil.Commun. Soil Sci. Plant Anal 21: 407–413

    Article  CAS  Google Scholar 

  • Thorburn, P.J., and R.J. Shaw. 1987. Effects of different dispersion and fine- fraction determination methods on the results of routine particle-size analysis.Aust. J. Soil Res 25: 347–360

    Article  Google Scholar 

  • Tiessen, H., and J.W.B. Stewart. 1983. Particle-size fractions and their use in studies of soil organic matter: II. Cultivation effects on organic matter composition in size fractions.Soil Sci. Soc. Amer. J 47: 509–514

    Article  CAS  Google Scholar 

  • Tiessen, H., and J.W.B. Stewart. 1988. Light and electron microscopy of stained microaggregates: the role of organic matter and microbes in soil aggregation.Biogeochemistry 5: 312–322

    Article  CAS  Google Scholar 

  • Tiessen, H., J.W.B. Stewart, and J.O. Moir. 1983. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation.J. Soil Sci 34: 815–823

    Article  CAS  Google Scholar 

  • Tiessen, H., R.E. Karamanos, J.W.B. Stewart, and F. Selles. 1984a. Natural nitrogen-15 abundance as an indicator of soil organic matter transformation in native and cultivated soils.Soil Sci. Soc. Amer. J 48: 312–315

    Article  CAS  Google Scholar 

  • Tiessen, H., J.W.B. Stewart and H.W. Hunt. 1984b. Concepts of soil organic matter transformations in relation to organo-mineral particle size fractions.Plant Soil 76: 287–295

    Article  CAS  Google Scholar 

  • Tinsley, J., J.F. Darbyshire (eds.) 1984. Biological Processes and Soil Fertility. Martinus Nijhoff/Dr. W. Junk Publ. The Hague, The Netherlands

    Google Scholar 

  • Tisdall, J.M., and J.M. Oades. 1982. Organic matter and water-stable aggregates in soils.J. Soil Sci 33: 141–163

    Article  CAS  Google Scholar 

  • Tsutsuki, K., and S. Kuwatsuka. 1989. Degration and stabilization of the humus in buried humic Ando soils.Sci. Tot. Environ 81/82, 437–446

    Google Scholar 

  • Turchenek, L.W., and J.M. Oades. 1974. Size and density fractionation of naturally occurring organo-mineral complexes.Trans. 10th Int. Congr. Soil Sci., Moscow 2: 65–72

    CAS  Google Scholar 

  • Turchenek, L.W., J.M. Oades. 1978. Organo-mineral particles in soils. pp. 138–144. In W.W. Emerson et al. (eds.)Modification of Soil Structure. Wiley, Chichester

    Google Scholar 

  • Turchenek, L.W., and J.M. Oades. 1979. Fractionation of organo-mineral complexes by sedimentation and density techniques.Geoderma 21: 311–343

    Article  CAS  Google Scholar 

  • Van der Linden, A.M.A., J.A. Van Veen, M.J. Frissel. 1987. Modelling soil organic matter levels after long-term applications of crop residues, and farmyard and green manures.Plant Soil 101:21–28.

    Article  Google Scholar 

  • Van Veen, J. A., P.J. Kuikman. 1990. Soil structural aspects of decomposition of organic matter by micro-organisms.Biogeochemistry 11: 213–234

    Article  Google Scholar 

  • Van Veen, J.A., E.A. Paul. 1981. Organic carbon dynamics in grassland soils. 1. Background information and computer simulation.Can. J. Soil Sci 61: 185–201

    Article  Google Scholar 

  • Van Veen, J.A., J.N. Ladd, M. Amato. 1985. Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubated with [14C (U)] glucose and [15N] (NH4)2SO4 under different moisture regimes.Soil Biol. Biochem 17: 747–756

    Article  Google Scholar 

  • Vaughan, D., R.E. Malcolm (eds.) 1985.Soil Organic Matter and Biological Activity Martinus Nijhoff/Dr. W. Junk Publ., Dordrecht, The Netherlands

    Google Scholar 

  • Verberne, E.L.J., J. Hassink, P. de Willigen, J.J.R. Groot, J.A. van Veen. 1990. Modelling organic matter dynamics in different soils.Neth. J. Agric. Sci 38:221–238

    Google Scholar 

  • Vitorello, V.A., C.C. Cerri, F. Andreux, C. Feller, and R.L. Victoria. 1989. Organic matter and natural carbon-13 distribution in forested and cultivated oxisols.Soil Sci. Soc. Amer. J 53: 773–778

    Article  CAS  Google Scholar 

  • Voroney, R.P., E.A. Paul, and D.W. Anderson. 1989. Decomposition of wheat straw and stabilization of microbial products.Can. J. Soil Sci 69: 63–77

    Article  Google Scholar 

  • Walker, P.H., and J. Hutka. 1973. Grain fragmentation in preparing samples for particle-size analysis.Soil Sci. Soc. Amer. Proc 37: 278–280

    Article  Google Scholar 

  • Wang, T.S.C., S.W. Li, and Y.L. Ferng. 1978. Catalytic polymerization of phenolic compounds by clay minerals.Soil Sci 126: 15–21

    Article  CAS  Google Scholar 

  • Wang, T.S.C., M.C. Wang, and Y.L. Ferng. 1983. Catalytic synthesis of humic substances by natural clays, silts and soils.Soil Sci 135: 350–360

    Article  CAS  Google Scholar 

  • Wang, T.S.C., P.M. Huang, C.-H. Chou, J.-H. Chen. 1986. The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances, pp. 251–281. In P.M. Huang M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organics and Microbes SSSA, Madison, Wisconsin, USA

    Google Scholar 

  • Watson, J.R. 1970.Studies on clay-organic nitrogen complexes in soils Ph.D. thesis, Department of Soil Science, University of Aberdeen, UK

    Google Scholar 

  • Watson, J.R. 1971. Ultrasonic vibration as a method of soil dispersion.Soils Fert 34: 127–134

    Google Scholar 

  • Watson, J.R., and J.W. Parsons. 1974a. Studies of soil organo-mineral fractions. Isolation by ultrasonic dispersion.J. Soil Sci 25: 1–8

    Article  CAS  Google Scholar 

  • Watson, J.R., and J.W. Parsons. 1974b. Studies of soil organo-mineral fractions. Extraction and characterization of organic nitrogen compounds.J. Soil Sci 25: 9–15

    Article  CAS  Google Scholar 

  • Weissler, A., and E.J. Hine. 1962. Variations of cavitation intensity in an ultrasonic generator.J. Acoust. Soc. Amer 34: 130–131

    Article  Google Scholar 

  • Whitehead, D.C., H. Buchan, R.D. Hartley. 1975. Components of soil organic matter under grass and arable cropping.Soil Biol. Biochem 7: 65– 71

    Article  CAS  Google Scholar 

  • Williams, B.L. 1983. The nitrogen content of particle size fractions separated from peat and its rate of mineralization during incubation.J. Soil Sci 34: 113–125

    Article  CAS  Google Scholar 

  • Williams, B.L., M.V. Cheshire, and G.P. Sparling. 1987. Distribution ofl4C between particle size fractions and carbohydrates separated from a peat incubated withl4C-glycine.J. Soil Sci 38: 659–666

    Article  CAS  Google Scholar 

  • Young, J.L., and G. Spycher. 1979. Water-dispersible soil organic-mineral particles: I. Carbon and nitrogen distribution.Soil Sci. Soc. Amer. J 43: 324–328

    Article  CAS  Google Scholar 

  • Zhang, H., M.L. Thompson, and J.A. Sandor. 1988. Compositional differences in organic matter among cultivated and uncultivated Argiudolls and Hapludalfs derived from loess.Soil Sci. Soc. Amer. J. 52: 216–222

    Article  CAS  Google Scholar 

  • Zhu, Y., G. Pardini, G. Poggio, and P. Sequi. 1983. Distribution of phosphorus in particle-size fractions of soils treated with organic wastes.Agrochimica 27: 105–111

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Christensen, B.T. (1992). Physical Fractionation of Soil and Organic Matter in Primary Particle Size and Density Separates. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2930-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2930-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7724-8

  • Online ISBN: 978-1-4612-2930-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics