Skip to main content

Practical Problems in Calculating Thermodynamic Functions for Crystalline Substances from Empirical Force Fields

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

The correlation between the structure and thermodynamic properties of minerals has long been considered fundamental. Besides the first-law functions, it is possible to calculate entropy and free energy for a pure ideal crystal if the vibrational properties are taken into account. These calculations imply the precise evaluation of spectroscopic data (Raman, IR, phonon dispersion curves) and allow good estimates of elastic properties and atomic displacement parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au, A.Y. and Weidner, D.J. (1986). Theoretical modelling of the elastic properties of forsterite: A polyhedral approach. Phys. Chem. Miner. 13, 360–370.

    Google Scholar 

  • Bertaut, F. (1952). L’Energie electrostatique de reseaux ioniques. J. Phys. 13, 499–505.

    Google Scholar 

  • Bertaut, F. (1978a). The equivalent charge concept and its application to the electrostatic energy of charges and multipoles. J. Phys. 39, 1331–1348.

    Article  Google Scholar 

  • Bertaut, F. (1978b). Electrostatic potentials, fields and field gradients. J. Phys. Chem. Solids 39, 97–102.

    Article  Google Scholar 

  • Bertaut, F. (1983). Energie dipolaire ďune structure modulee. C. R. Acad. Sci. Ser. II 296, 1123–1127.

    Google Scholar 

  • Bertaut, F. (1985). Analyse de representation de la phase incommensurable de K2SeO4, cas ďun groupe ďespace non symmorphe. C.R. Acad. Sci. Ser. II 300, 589–594.

    Google Scholar 

  • Bertaut, F. (1986). Champs, energies coulombienne, dipolaire et de polarisation dans une structure incommensurable. C.R. Acad. Sci. Ser. II 302, 1137–1142.

    Google Scholar 

  • Birle, J.D., Gibbs, G.V., Moore, P.B., and Smith, J.V. (1968). Crystal structures of natural olivines. Amer. Mineral. 53, 807–824.

    Google Scholar 

  • Bocchio, R., Brajkovic, A., and Pilati, T. (1986). Crystal chemistry of the olivines in the peridotites from the Ivrea-Verbano zone (Western Italian Alps). Neues Jahrb. Miner. Monatsh. 7, 313–324.

    Google Scholar 

  • Born, M. and Huang, K. (1954). Dynamical Theory of Crystal Lattices. Oxford, Clarendon Press.

    Google Scholar 

  • Burnham, C.W. (1990). The ionic model: Perceptions and realities in mineralogy. Amer. Mineral 75, 443–463.

    Google Scholar 

  • Busing, W.R. (1981). WMIN, a computer program to model molecules and crystals in terms of potential energy functions. ORNL-5747, U.S. Technical Inform. Sev.

    Google Scholar 

  • Busing, W.R. and Matsui, M. (1984). The application of external forces to computational models of crystals. Acta Cryst. A40, 532–538.

    Google Scholar 

  • Catlow, C.R.A. and Mackrodt, W.C. (1982). Computer simulation of solids, in Lecture Notes in Physics, Vol. 166, Springer-Verlag, Berlin.

    Google Scholar 

  • Catti, M. (1982). Atomic charges in Mg2SiO4 (forsterite), fitted to thermoelastic and structural properties. J. Phys. Chem. Solids 43, 1111–1118.

    Article  Google Scholar 

  • Catti, M. (1989). Modelling of structural and elastic changes of forsterite (Mg2SiO4) under stress. Phys. Chem. Miner. 16, 582–590.

    Article  Google Scholar 

  • Choudhury, N., Chaplot, S.L., and Rao, K.R. (1989). Equation of state and melting point studies of forsterite. Phys. Chem. Miner. 16, 599–605.

    Article  Google Scholar 

  • Cochran, W. (1971). Lattice dynamics of ionic and covalent crystals. C.R.C. Crit. Rev. Solid State Sci. 2, 1–83.

    Article  Google Scholar 

  • Cochran, W. (1973). The Dynamics of Atoms in Crystals. London, Arnold.

    Google Scholar 

  • Eastman, E.D. and McGavock, W.C. (1937). The heat capacity and entropy of rhombic and monoclinic Sulfur. J. Amer. Chem. Soc. 59, 145–151.

    Article  Google Scholar 

  • Elcombe, M. (1967). Some aspects of the lattice dynamics of quartz. Proc. Phys. Soc. 91, 947–958.

    Article  Google Scholar 

  • Ewald, P.P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. (Leipzig) 64, 253–287.

    Article  Google Scholar 

  • Filippini, G., Gramaccioli, C.M., Simonetta, M., and Sufl’ritti, G. B. (1976). Lattice-dynamical applications to crystallographic problems: Consideration of the Brillouin zone sampling. Acta Cryst. A32, 259–264.

    Google Scholar 

  • Fujino, K., Sasaki, S., Takeuchi, Y., and Sadanaga, R. (1981). X-ray determination of electron distributions in forsterite, fayalite and tephroite. Acta Cryst. B37, 513–518.

    Google Scholar 

  • Ghose, S. (1985). Macroscopic to microscopic, in Lattice Dynamics, Phase Transitions and Soft Modes, Reviews in Mineralogy, S.W. Kieffer and A. Navrotsky, eds., Mineralogy Society of America, Washington, D.C.; Vol. 14, Chap. 4.

    Google Scholar 

  • Ghose, S., Hastings, J.M., Corliss, L.M., Rao, K.R., Chaplot, S.L., and Choudhury, L. (1987). Study of phonon dispersion relations in forsterite, Mg2SiO4 by inelastic neutron scattering. Solid State Commun. 63, 1045–1050.

    Article  Google Scholar 

  • Gramaccioli, C.M. (1987). Spectroscopy of molecular crystals and crystallographic implication. Int. Rev. Phys. Chem. 6 (4), 337–349.

    Article  Google Scholar 

  • Gramaccioli, C.M. and Filippini, G. (1983). Lattice-dynamical evaluation of temperature factors in non-rigid molecular crystals: A first application to aromatic hydrocarbons. Acta Cryst. A39, 784–791.

    Google Scholar 

  • Gramaccioli, C.M. and Filippini, G. (1984). Lattice-dynamical calculations for orthorhombic sulfur: A non-rigid molecular model. Chem. Phys. Lett. 108, 585–588.

    Article  Google Scholar 

  • Gramaccioli, C.M. and Filippini, G. (1985). Thermal motion for non-rigid molecules in crystals: Symmetry of the generalized mean-square displacement tensor W.Acta Cryst. A41, 356–361.

    Google Scholar 

  • Guthrie, G.B., Jr., Scott, D.W., and Waddington, G. (1954). Thermodynamic functions and heat of formation of S 8 (gas). J. Amer. Chem. Soc. 76, 1488–1493.

    Article  Google Scholar 

  • Hazen, R.N. (1976). Effects of temperature and pressure on the crystal structure of forsterite. Amer. Mineral. 61, 1280–1293.

    Google Scholar 

  • Iishi, K. (1976). The analysis of the phonon spectrum of α-quartz based on a polarizableion model. Z. Krist. 144, 289–303.

    Article  Google Scholar 

  • Iishi, K. (1978a). Lattice-dynamical study of the β -quartz phase transition. Amer. Mineral. 63, 1190–1197.

    Google Scholar 

  • Iishi, K. (1978b). Lattice Dynamics of Corundum. Phys. Chem. Miner. 3, 1–10.

    Article  Google Scholar 

  • Iishi, K. (1978c). Lattice dynamics of forsterite. Amer. Mineral. 63, 1198–1208.

    Google Scholar 

  • Iishi, K., Salje, E., and Werneke, C. (1979). Phonon spectra and rigid-ion model calculations on andalusite. Phys. Chem. Miner. 4, 173–186.

    Article  Google Scholar 

  • Iishi, K., Miura, M., Shiro, Y., and Murata, H. (1983). Lattice dynamics of α-quartz including the effect of the width of the atomic electron distribution. Phys. Chem. Miner. 9, 61–66.

    Article  Google Scholar 

  • Johnson, C.K. (1976). ORTEPII: A FORTRAN thermal-ellipsoid plot program for crystal structure illustrations. Rept. ORNL-5138. Oak Ridge Nat. Lab. Tenn.

    Book  Google Scholar 

  • Kellermann, E.W. (1940). Theory of the vibrations of the sodium chloride lattice. Phil. Trans. R. Soc. Lond. 238, 513–548.

    Article  Google Scholar 

  • Kiefl’er, S.W. (1985). Macroscopic to microscopic, in Heat Capacity and Entropy: Systematic Relations to Lattice Vibrations, Reviews in Mineralogy, 14, S.W. Kieffer and A. Navrotsky, eds., Mineralogy Society of America, Washington, D.C.; Vol. 14, Chap. 3.

    Google Scholar 

  • Kroon, P. A. and Vos, A. (1978). Convergence of Brillouin zone summations. Acta Cryst. A34, 823–824.

    Google Scholar 

  • Kroon, P.A. and Vos, A. (1979). Thermal diffuse scattering for molecular crystals: Error in X-ray diffraction intensities and atomic parameters. Acta Cryst. A35, 675–684.

    Google Scholar 

  • Lam, P.K., Rici, Y., Lee, M.W., and Sharma, S.K. (1990). Structural distorsions and vibrational modes in Mg2SiO4. Amer. Mineral. 75, 109–119.

    Google Scholar 

  • Langen, R. (1987). Ph.D. Thesis, Die Abhängigkeit der Kationenverteilung in einem Mg-Fe-Olivin (Som Carlos, Arizona vom Sauerstofîpartialdruck. Rheinisches Friedrich-Wilhelm Universität, Bonn.

    Google Scholar 

  • Matsui, M. and Busing, W.R. (1984a). Computational modeling of the structure and elastic constants of the olivine and spinel forms of Mg2SiO4. Phys. Chem. Miner. 11, 55–59.

    Article  Google Scholar 

  • Matsui, M. and Busing, W.R. (1984b). Calculation of the elastic constants and high-pressure properties of diopside, CaMgSi2O6. Amer. Mineral. 69, 1090–1095.

    Google Scholar 

  • Matsui, M. and Matsumoto, T. (1982). An interatomic potential-function model for Mg, Ca and CaMg olivines. Acta Cryst. A38, 513–515.

    Google Scholar 

  • Miyamoto, M., Takeda, H., Fujino, K., and Takeuchi, Y. (1982). The ionic compressibilities and radii estimated for some transition metals in olivine structure. Miner. J. 11, 172–179.

    Article  Google Scholar 

  • Ottonello, G. (1986). Energetics of multiple oxides with spinel structure. Phys. Chem. Miner. 13, 79–90.

    Article  Google Scholar 

  • Parker, S.C., Catlow, C.R.A., and Cormack, A.N. (1983). Prediction of mineral structure by energy minimisation techniques. J. Chem. Soc., Chem. Commun. 529, 936–938.

    Article  Google Scholar 

  • Pawley, G.S. and Rinaldi, R.P. (1972). Constrained refinement of orthorhombic sulphur. Acta Cryst. B28, 3605–3609.

    Google Scholar 

  • Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990a). Evaluation of atomic displacement parameters by lattice-dynamical calculations: Efficiency in Brillouin-zone sampling. Acta Cryst. A46, 485–489.

    Google Scholar 

  • Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990b). Evaluation of Coulombic lattice sums for vibrational calculations in crystals: An extension of Bertauťs method. Acta Cryst. A46, 309–315.

    Google Scholar 

  • Pilati, T., Bianchi, R., and Gramaccioli, C.M. (1990c). Lattice-dynamical estimation of atomic thermal parameters in silicates: Forsterite α-Mg2SiO4. Acta Cryst. B46, 301–311.

    Google Scholar 

  • Price, G.D. and Parker, S.C. (1984). Computer simulations of the structural and physical properties of the olivine and spinel polymorphs of Mg2SiO4. Phys. Chem. Miner. 10, 209–216.

    Article  Google Scholar 

  • Price, G.D., Parker, S.C., and Leslie, M. (1987a). The lattice dynamics of forsterite. Miner. Magazine 51, 157–170.

    Article  Google Scholar 

  • Price, G.D., Parker, S.C., and Leslie, M. (1987b). The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys. Chem. Miner. 15, 181–190.

    Article  Google Scholar 

  • Price, G.D., Parker, S.C., and Yeomans, J. (1985). The energetics of polytypic structures: A computer simulation of magnesium silicate spinelloids. Acta Cryst. B41, 231–239.

    Google Scholar 

  • Rao, K.R., Chaplot, S.L., Choudhury, L., Ghose, S., Hastings. J.M. and Corliss L.M. (1988). Lattice dynamics and inelastic neutron scattering from forsterite, Mg2SiO4: Phonon dispersion relation, density of states and specific heat. Phys. Chem. Miner. 16, 83–97.

    Article  Google Scholar 

  • Reid, J.S. and Smith, T. (1970). Improved Debye-Waller factors for some alkali halides. J. Phys. Chem. Solids 31, 2689–2697.

    Article  Google Scholar 

  • Rinaldi, R. and Pawley, G.S. (1975). An investigation of the intermolecular modes in orthorhombic sulphur. J. Phys. C 8, 599–616.

    Article  Google Scholar 

  • Robie, R.A., Hemingway, B.S., and Takei, H. (1982). Heat capacities and entropies of Mg2SiO4, Mn2SiO4, and Co2SiO4 between 5 and 380 K. Amer. Miner. 67, 470–482.

    Google Scholar 

  • Vieillard, P. (1982). Modele de Calcul des Energies de Formation des Mineraux, Bati sur la Connoissance Raffinée des Structures Cristallines. Memoire 69, Université Louis Pasteur de Strasbourg, Institut de Geologie.

    Google Scholar 

  • Willis, B.T.M. and Pryor, A.W. (1975). Thermal Vibrations in Crystallography. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Woods, A.D.B., Cochran, W., and Brockhouse, B.N. (1960). Lattice dynamics of alkali halide crystals. Phys. Rev. 119, 980–999.

    Article  Google Scholar 

  • Woods, A.D.B., Brockhouse, B.N., and Cowley, R.A. (1963). Lattice dynamics of alkali halide crystals. II. Experimental studies of KBr and Nal. Phys. Rev. 131, 1025–1029.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Gramaccioli, C.M., Pilati, T. (1992). Practical Problems in Calculating Thermodynamic Functions for Crystalline Substances from Empirical Force Fields. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics