Skip to main content

Crystal Chemical and Energetic Characterization of Solid Solution

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

The golden age of classic crystal chemistry (1920s–30s) yielded many well-known empirical rules and generalizations concerning the formation of solid solutions or isomorphous mixtures (mixed crystals). Among them are Vegard’s rule of additive dependence of lattice spacings on composition, Goldschmidt and Hume-Roseri’s rules of maximal 15% difference of ionic or atomic radii for the existence of wide miscibility, Goldschmidt and Fersman’s rules of substitution polarity (in relation to sizes and charges of the ions replacing each other), and the criteria of proximity of polarizabilities or electronegativities of substituents, etc. In the sections that follow we will return to an analysis of these rules from a more sophisticated and modern point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahtee, M. (1969). Lattice constants of some binary alkali halide solid solutions. Ann. Acad. Sci. Fenn.AVI, N313, 1–14.

    Google Scholar 

  • Ahtee, M. and Inkinen, O. (1970). Critical solution temperatures of binary alkali halide solid solutions. Ann. Acad. Sci. Fenn.AVI, N355, 1–14.

    Google Scholar 

  • Akaogi, M., Ito, E., and Navrotsky, A. (1989). Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4: Calorimetric measurements, thermo-chemical calculations and geophisical application. J. Geophys. Res.94, 15671–15685.

    Article  Google Scholar 

  • Anderson, O.L. and Nafe, J.E. (1965). The bulk modulus-volume relationship for oxide compounds and related geophysical problems. J. Geophys. Res.70, 3951–3953.

    Article  Google Scholar 

  • Anderson, D.L. and Anderson, O.L. (1970). The bulk modulus-volume relationship for oxides. J. Geophys. Res.75, 3494–3500.

    Article  Google Scholar 

  • Bandyopadhyay, S. and Deb, S.K. (1988). Divalent defects in alkali halides. Ind. J. Phys.A62, 298–302.

    Google Scholar 

  • Barrett, W.T. and Wallace, W.E. (1954). Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, Schotky defects and mutual solubility. J. Amer. Chem. Soc.76, 366–380.

    Article  Google Scholar 

  • Bhardway, M.C. and Roy, R. (1971). Effect of high pressure on crystal solubility in the system NaCl-KCl. J. Phys. Chem. Solid 32, 1603–1607.

    Article  Google Scholar 

  • Born, M. (1923). Atomtheorie des festen Zustandes. Berlin.

    Google Scholar 

  • Bowman, R.C. (1973). Theoretical solution enthalpies of divalent impurities in the alkali halides. J. Chem. Phys.59, 2215–2223.

    Article  Google Scholar 

  • Boyce, J.B. and Mikkelsen, J.C. (1985). Local structure of ionic solid solutions: Extended X-ray absorption fine-structure study. Phys. Rev.B31, 6903–6905.

    Google Scholar 

  • Callahan, S.J.E. and Smith, N.O. (1966). Crystallographic studies of NH4Cl-NH4Br solid solutions. Adv. X-ray Anal.9, 156–169.

    Google Scholar 

  • Davies, P.K. and Navrotsky, A. (1983). Quantitative correlations of deviations from ideality in binary and pseudobinary solid solutions. J. Solid State Chem.46, 1–22.

    Article  Google Scholar 

  • Dollase, W.A. (1980). Optimum distance model of relaxation around substitutional defects. Phys. Chem. Miner.6, 295–304.

    Article  Google Scholar 

  • Durham, G.S. and Hawkins, J.A. (1951). Solid solutions of the alkali halides. II. The theoretical calculation of lattice constants, heats of mixing and distributions between solid and aqueous phases. J. Chem. Phys.19, 149–156.

    Article  Google Scholar 

  • Fancher, D.L. and Barsch, G.R. (1969). Lattice theory of alkali halide solid solutions. I. Heat of formation. J. Phys. Chem. Solids 30, 2503–2510.

    Article  Google Scholar 

  • Fancher, D.L. and Barsch, G.R. (1971). Lattice theory of alkali halide solid solutions. III. Pressure dependence of solid solubility and spinodal decomposition. J. Phys. Chem. Solids 32,1303–1313.

    Article  Google Scholar 

  • Fedders, P.A. and Muller, M.V. (1984). Mixing enthalpy and composition fluctuation in ternary III-V semiconductor alloys. J. Phys. Chem. Solids 45, 685–688.

    Article  Google Scholar 

  • Ferreira, L.G., Mbaye, A.A., and Zunger, A. (1988). Chemical and elastic effects on isostructural phase diagrams: The ε-G approach. Phys. Rev.B37,10547–10570.

    Google Scholar 

  • Grimm, H.G. and Herzfeld, K.F. (1923). Uber Gitterenergie und Gitterabstand von Mischkristallen. Z. Physik, 16, 77–83.

    Article  Google Scholar 

  • Hietala, J. (1963a). Alkali halide solid solutions. II. Heat of formation of the sodium chloride type. Ann. Acad. Sci. Fenn.AVI, N122, 1–31.

    Google Scholar 

  • Hietala, J. (1963b). Alkali halide solid solutions. III. Heat of formation of the cesium chloride type. AVI, N123,1–18.

    Google Scholar 

  • Hovi, V. (1950). On Wasastjerna theory of the heat of formation of solid solutions. Soc. Sci. Fenn., Comment. Phys.-Math.XV, N12, 1–20.

    Google Scholar 

  • Iveronova, V.I. (1954). Deformations du reseau cristallique dans les solutions solides. Trudy Inst. Krist. Akad. Nauk SSSR 10, 339–347.

    Google Scholar 

  • Kirkinsky, V.A. and Fursenko, B.A. (1980). Estimation of thermodynamic functions of minerals of variable composition at high pressure using equations of state for end members. Phys. Earth Planet Inter. 22, 262–266.

    Article  Google Scholar 

  • Kleppa, O.I. and Meschel, S.V. (1965). Heats of formation of solid solutions in the system (Na-Ag)Cl and (Na-Ag)Br. J. Phys. Chem.69, 3531–3536.

    Article  Google Scholar 

  • Kravchuk, I.F. and Urusov, V.S. (1978). Theoretical calculations of partition coefficients of isovalent impurities with due regard for excess entropy of mixing in the solid solution and the melt. Krist. und Techn.13, 1195–1202.

    Article  Google Scholar 

  • Lister, M.V. and Meyers, N.F. (1958). Heats of formation of some solid solutions of alkali halides. J. Phys. Chem.62, 145–150.

    Article  Google Scholar 

  • Martins, J.L. and Zunger, A. (1984). Bond length around isovalent impurities in semiconductor solid solutions. Phys. Rev.B30, 6217–6220.

    Google Scholar 

  • Mikkelsen, J.C. and Boyce, J.B. (1983). Extended X-ray absorption fine-structure study of Ga1-xInxAs random solid solutions. Phys. Rev.B28, 7130–7140.

    Google Scholar 

  • Mott, N.F. and Littleton, M.J. (1938). Conduction in polar crystals. I. Electrolytic conduction in solid salts. Trans. Farad. Soc.34, part 3, 485–495.

    Article  Google Scholar 

  • Navrotsky, A. (1982). Trends and systematics in mineral thermodynamics. Ber. Bunsenges. Phys. Chem.86, 994–1001.

    Google Scholar 

  • Navrotsky, A. (1985). Crystal chemical constaints on thermochemistry of minerals. Rev. Mineral.13, 225–276.

    Google Scholar 

  • Navrotsky, A. (1987). Models of crystalline solutions. Rev. Mineral.17, 35–67.

    Google Scholar 

  • Nickels, I.E., Fineman, M.A., and Wallace, W.E. (1949). X-ray diffraction studies of sodium chloride-sodium bromide solid solutions. J. Phys. Colloid. Chem.53, 625–630.

    Article  Google Scholar 

  • Onuma, N., Higuchi, H., Wakita, H., and Nagasawa, H. (1968). Trace element partition between two pyroxenes and the host lava. Earth Planet. Sci. Lett.5,47–51.

    Article  Google Scholar 

  • Pauling, L. (1960). The Nature of the Chemical Bond. 3rd ed., Cornell Univ. Press, Ithaca, N.Y.

    Google Scholar 

  • Phillips, J.C. (1973). Bonds and Bands in Semiconductors, Academic Press, New York.

    Google Scholar 

  • Sasaki, T., Onda, T., Ito, R., and Ogasawa, N. (1986). An extended X-ray absorption fine-structure study of bond lengths in GaAs1-xPx. Jap. J. Appl. Phys.25, 231–233.

    Article  Google Scholar 

  • Saxena, S.K. (1973). Thermodynamics of Rock-Forming Crystalline Solutions. Springer-Verlag, Heidelberg-New York.

    Google Scholar 

  • Shih, C.K., Spicer, W.E., Harrison, W.A., and Sher, A. (1985). Bond-length relaxation in pseudobinary alloys. Phys. Rev.B31,1139–1144.

    Google Scholar 

  • Slagle, O.D. and McKinstry, H.A. (1966). The lattice parameters in the solid solution KCl-KBr. Acta Cryst.21, 1013–1015.

    Article  Google Scholar 

  • Srivastava, G.P. and Weaire, D. (1987). The theory of cohesive energy of solids. Adv. Phys.36, 463–517.

    Article  Google Scholar 

  • Stoneham, A.M. (1975). Theory of Defects in Solids. Clarendon Press, Oxford.

    Google Scholar 

  • Stringfellow, G.B. (1973). Calculation of regular solution interaction parameters in semiconductor solid solution. J. Phys. Chem. Solids 34, 1749–1751.

    Article  Google Scholar 

  • Suh, K.S. and Talwar, D.N. (1989). Bond length relaxation and thermodynamic parameter in A1-xBxC alloy semiconductors. Cryst. Latt. Def. Amorph. Matt.18, 503–509.

    Google Scholar 

  • Talwar, D.N., Suh, K.S., and Ting, C.S. (1987). Lattice distortions associated with isovalent defects in semiconductors. Phil. Mag.B56, 593–609.

    Google Scholar 

  • Urusov, V.S. (1968a). Effect of size difference on limits of isovalent substitutions. Geo-chimiya N9, 1033–1043.

    Google Scholar 

  • Urusov, V.S. (1968b). Covalency effects in heats of formation of inorganic solid solutions. Dokl. Akad. Nauk SSSR 181, 1185–1188.

    Google Scholar 

  • Urusov, V.S. (1969a). Application of Wasastjerna-Hovi theory for partly covalent solid solutions. Zh. Fiz. Chim.43, 537–540.

    Google Scholar 

  • Urusov, V.S. (1969b). Asymmetry of solid solution boundaries as a consequence of structure and bonding type difference of end members. Zh. Fiz. Chim.43, 3030–3033.

    Google Scholar 

  • Urusov, V.S. (1970). Calculations of miscibility gaps of isovalent solid solutions. Izv. Akad. Nauk SSSR, Neorg. Mater. 6, 1209–1214.

    Google Scholar 

  • Urusov, V.S. (1974). Energetic theory of miscribility gaps in mineral solid solutions. Fortschr. Miner.52, 141–150.

    Google Scholar 

  • Urusov, V.S. (1975). Energetic Crystal Chemistry. Nauka, Moscow (in Russian).

    Google Scholar 

  • Urusov, V.S. (1977). Theory of Isomorphous Miscibility. Nauka, Moscow (in Russian).

    Google Scholar 

  • Urusov, V.S. and Kravchuk, I.F. (1976). Energetic analysis and calculations of partition coefficients of isovalent impurities during crystallization of melt. Geochimiya N8,1204–1223.

    Google Scholar 

  • Urusov, V.S. and Kravchuk, I.F. (1978). Effect of microimpurity catching by crystal lattice defects and its geochemical role. Geochimiya N7, 963–978.

    Google Scholar 

  • Urusov, V.S. (1980). Energetic formulation of the problem of equilibrium cocrystallization from water solution. Geochimiya N5, 627–644.

    Google Scholar 

  • Urusov, V.S. and Kravchuk, I.F. (1983). Vibrational entropy of substitutional solid solutions. Cryst. Res. Technol.18, 629–636.

    Article  Google Scholar 

  • Urusov, V.S., Dudnikova, V.B., and Garanin, A.V. (1980). Calculations of solution energies of alkaline-earth ions in alkali halide crystals. Phys. Stat. Sol.102b, 695–703.

    Google Scholar 

  • Vernon, S.P. and Stearns, M.B. (1984). Extended X-ray absorption fine-structure study of Y3+ and Sr2+ impurities in CaF2. Phys. Rev.B29, 6968–6971.

    Google Scholar 

  • Wasastjerna, J.A. (1945). Some experimental values of the atomic scattering factor. Thermal vibrations and lattice distortions in pure and mixed crystals. Soc. Sci. Fenn., Comment. Phys.-Math.XIII, N5, 1–24.

    Google Scholar 

  • Wasastjerna, J.A. (1949). On the theory of the heat of formation of solid solutions. Soc. Sci. Fenn., Comment. Phys.-Math.XV, N3, 1–30.

    Google Scholar 

  • Wood, B.J. and Kleppa, O.J. (1981). Thermochemistry of forsterite-fayalite olivine solutions. Geochim. Cosmochim. Acta 45, 529–534.

    Article  Google Scholar 

  • Zen, E-an. (1956). Validity of “Vegard’s law.” Amer. Miner.41, 523–525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Urusov, V.S. (1992). Crystal Chemical and Energetic Characterization of Solid Solution. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics