Skip to main content

Thermodynamics of Silicate Melts: Configurational Properties

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

The ease with which a liquid adjusts to the shape of its container is a well-known consequence of the hallmark of the molten state, atomic mobility. Atomic mobility is the very reason why liquids flow, even though another salient feature evident through daily experience is that the viscosity increases when the temperature decreases. In fact, if crystallization does not occur, the viscosity eventually becomes so high that flow can no longer take place during the timescale of an experiment. The resulting material is a glass, i.e., a solid with the frozen-in disordered atomic arrangement of a liquid. Glasses have been produced for millennia, but the kinetic nature of the liquid-glass transition and its influence on the properties of glasses have long remained elusive. We will not specifically address these aspects, however, because they have already been extensively discussed in the geochemical literature from a relaxational (Dingwell and Webb, 1990) or thermochemical standpoint (Richet and Bottinga, 1983, 1986). In this review, we will focus on features of liquids that are directly related to atomic mobility, namely, the existence of those contributions to physical properties of liquids that have been termed configurational (Simon, 1931; Bernal, 1936).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam, G. and Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys.43, 139–146.

    Article  Google Scholar 

  • Akimoto, S.I., Komada, E., and Kushiro, I. (1967). Effect of pressure on the melting of olivine and spinel polymorphs of Fe2SiO4. J. Geophys. Res.72, 679–686.

    Article  Google Scholar 

  • Angell, C.A. (1988). Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871.

    Article  Google Scholar 

  • Angell, C.A. and Sichina, W. (1976). Thermodynamics of the glass transition: Empirical aspects. Ann. N.Y. Acad. Sci.279, 53–67.

    Article  Google Scholar 

  • Arndt, J. and Häberle, F. (1973). Thermal expansion and glass transition temperatures of synthetic glasses of plagioclase-like compositions. Contrib. Mineral. Petrol.39, 175–183.

    Article  Google Scholar 

  • Bacon, C.R. (1977). High-temperature heat content and heat capacity of silicate glasses: Experimental data and a model of calculation. Amer. J. Sci.277,109–135.

    Article  Google Scholar 

  • Bernal, J.D. (1936). An attempt at a molecular theory of liquid structure. Disc. Farad. Soc.336, 27–40.

    Google Scholar 

  • Bockris, J.O.’M. and Lowe, D.C. (1954). Viscosity and structure of liquid silicates. Proc. Roy. Soc., Lond.A226,423–435.

    Google Scholar 

  • Bockris, J.O.’M., Mackenzie, J.D., and Kitchener, J.A. (1955). Viscous flow in silica and binary liquid silicates. Trans. Farad. Soc.51, 1734–1748.

    Article  Google Scholar 

  • Bockris, J.O.’M., Tomlinson, J.W., and White, J.L. (1956). The structure of liquid silicates: Partial molar volumes and expansivities. Trans. Farad. Soc.53, 299–310.

    Article  Google Scholar 

  • Bottinga, Y. (1986). On the isothermal compressibility of silicate liquids at high pressure. Earth Planet. Sci. Lett.74, 350–360.

    Article  Google Scholar 

  • Bottinga, Y. and Weill, D.F. (1970). Density of liquid silicate systems calculated from partial molar volumes of oxide components. Amer. J. Sci.269,169–182.

    Article  Google Scholar 

  • Bottinga, Y. and Weill, D.F. (1972). Viscosity of magmatic silicate liquids: A model for calculation. Amer. J. Sci.272, 438–475.

    Article  Google Scholar 

  • Bottinga, Y., Weill, D.F., and Richet, P. (1982). Density calculations for silicate liquids. I. Revised method for aluminosilicate compositions. Geochim. Cosmochim. Acta, 46,909–919.

    Article  Google Scholar 

  • Bottinga, Y., Richet, P., and Weill, D.F. (1983). Calculation of the density and thermal expansion coefficient of silicate liquids. Bull. Minéral.106,129–138.

    Google Scholar 

  • Carmichael, I.S.E., Nicholls, J, Spera, F.J., Wood, B.J., and Nelson, S.A. (1977). High temperature properties of silicate liquids: Application to the equilibration and ascent of basic magma. Phil. Trans. Roy. Soc. Lond.A286, 373–431.

    Google Scholar 

  • Davies, R.O. and G.O., Jones (1953). Thermodynamic and kinetic properties of glasses. Adv. Phys.2, 370–410.

    Article  Google Scholar 

  • Dingwell, D.B. and Webb, S.L. (1990). Relaxation in silicate melts. Eur. J. Mineral.2, 427–449.

    Google Scholar 

  • Farnan, I. and Stebbins, J.F. (1990). High-temperature 29Si NMR investigation of solid and molten silicates. J. Amer. Chem. Soc.112, 32–39.

    Article  Google Scholar 

  • Finger, L.W. and Ohashi, Y. (1976). The thermal expansion of diopside to 800°C and a refinement of the crystal structure at 700°C. Amer. Mineral.61, 303–310.

    Google Scholar 

  • Goldstein, M. (1969a). Viscous liquids and the glass transition: A potential energy barrier picture. J. Chem. Phys.51, 3728–3739.

    Article  Google Scholar 

  • Goldstein, M. (1976). Viscous liquids and the glass transition. V. Sources of the excess specific heat of the liquid. J. Chem. Phys.64,4767–4774.

    Article  Google Scholar 

  • Haggerty, J.S., Cooper, A.R., and Heasley, J.H. (1968). Heat capacity of three inorganic glasses and supercooled liquids. Phys. Chem. Glasses 5,130–136.

    Google Scholar 

  • Haselton H.T. and Westrum, E.F. (1980). Low-temperature heat capacities of synthetic pyrope, grossular, and pyrope60 grossular40. Geochim. Cosmochim. Acta 44, 701–709.

    Article  Google Scholar 

  • Haselton, H.T., Hovis, G.L., Hemingway, B.S., and Robie, R.A. (1983). Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solutions: Lack of evidence for Na,K short-range order and implications for two-feldspar thermometry. Amer. Mineral.68, 398–413.

    Google Scholar 

  • Haselton, H.T., Hemingway, B.S., and Robie, R.A. (1984). Low-temperature heat capacities of CaAl2Si06 glass and pyroxene and thermal expansion of CaAl2Si06 pyroxene. Amer. Mineral.69, 481–489.

    Google Scholar 

  • Hemley, R.J., Jephcoat, A.P., Mao, H.K., Ming, L.C., and Manghnani, M.H. (1988). Pressure-induced amorphization of crystalline silica Nature 334, 52–54.

    Article  Google Scholar 

  • Hummel, W. and Arndt, J. (1985). Variation of viscosity with temperature and composition in the plagioclase system. Contrib. Mineral. Petrol.90, 83–92.

    Article  Google Scholar 

  • Johari, G.P. (1976). Glass transition and secondary relaxations in molecular liquids and crystals. Ann. N.Y. Acad. Sci.279, 117–140.

    Article  Google Scholar 

  • Kauzmann, W. (1948). The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev.43, 219–256.

    Article  Google Scholar 

  • Kelley, K.K., Todd, S.S., Orr, L.R., King, E.G., and Bonnickson, K.R. (1953). Thermodynamic properties of sodium-aluminum silicates. U.S. Bureau Mines Rept. Inv. 4955.

    Google Scholar 

  • Knoche, R., Dingwell, D.B., and Webb, S.L. (1992). Temperature-dependent thermal expansivities of silicate melts: The system anorthite-diopside. Geochim. Cosmochim. Acta, in press.

    Google Scholar 

  • Krupka, K.M., Robie, R.A., Hemingway, B.S., Kerrick, D.M., and Ito, J. (1985). Low-temperature heat capacities and derived thermodynamic properties of antophyllite, diopside, enstatite, bronzite, and wollastonite. Amer. Mineral. 70, 249–260.

    Google Scholar 

  • Levien, L. and Prewitt, C.T. (1981). High-pressure structural study of diopside. Amer. Mineral.66, 315–323.

    Google Scholar 

  • Licko, T. and Danek, V. (1986). Viscosity and structure of melts in the system CaO-Mg0-Si02. Phys. Chem. Glasses 27, 22–29.

    Google Scholar 

  • Maekawa, H., Maekawa, T., Kawamura, K., and Yokokawa, Y. (1991). The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. J. Non-Cryst. Solids 127, 53–64.

    Article  Google Scholar 

  • Matson, D.W., Sharma, S.K., and Philpotts, J.A., (1986). Raman spectra of some tectosilicates and of glasses along the orthoclase-anorthite and nepheline-anorthite joins. Amer. Mineral.71, 694–704.

    Google Scholar 

  • Mishima, O., Calvert, L.D., and Whalley, E. (1984). “Melting ice” at 77 K and 10 kbar: A new method of making amorphous solids. Nature 310, 393–395.

    Article  Google Scholar 

  • Murdoch, J.B., Stebbins, J.F., and Carmichael, I.S.E., (1985). High-resolution 29Si NMR study of silicate and aluminosilicate glasses: The effect of network modifying cations. Amer. Mineral.70, 332–343.

    Google Scholar 

  • Navrotsky, A., Peraudeau, G., McMillan, P., and Coutures, J.P. (1982). Thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate. Geochim. Cosmochim. Acta 46, 2039–2047.

    Article  Google Scholar 

  • Navrotsky, A., Geisinger, K.L., McMillan, P., and Gibbs, G.V. (1985). The tetrahedral framework in glasses and melts. Inferences from molecular orbital calculations, and implications for structure, thermodynamics, and physical properties. Phys. Chem. Mineral.11, 284–298.

    Article  Google Scholar 

  • Neuville, D.R. and Richet, P. (1991). Vicosity and mixing in molten (Ca,Mg) pyroxenes and garnets. Geochim. Cosmochim. Acta 55, 1011–1019.

    Article  Google Scholar 

  • Nikonov, A.M., Bogdanov, V.N., Nemilov, S.V., Shono, A. A, and Mikhailov, V.N. (1982). Structural relaxation in binary alkalisilicate melts. Fyz. Khim. Stekla 8, 694–703.

    Google Scholar 

  • Richard, G. and Richet, P. (1990). Room-temperature amorphization of fayalite and high-pressure properties of Fe2Si04 liquid. Geophys. Res. Lett.17, 2093–2096.

    Article  Google Scholar 

  • Richet, P. (1984). Viscosity and configurational entropy of silicate melts. Geochim. Cosmochim. Acta 48, 471–483.

    Article  Google Scholar 

  • Richet, P. (1987). Heat capacity of silicate glasses. Chem. Geol 62, 111–124.

    Article  Google Scholar 

  • Richet, P. (1988). Superheating, melting and vitrification through decompression of high-pressure minerals. Nature 331, 56–58.

    Article  Google Scholar 

  • Richet, P. and Bottinga, Y. (1983). Verres, liquides, et transition vitreuse. Bull. Minéral.106,147–168.

    Google Scholar 

  • Richet, P. and Bottinga, Y. (1984a). Glass transition and thermodynamic properties of amorphous Si02, NaAlSin02n+2 and KAlSi3O8. Geochim. Cosmochim. Acta 48, 453–470.

    Article  Google Scholar 

  • Richet, P. and Bottinga, Y. (1984b). Anorthite, andesine, diopside, wollastonite, cordierite and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet. Sci. Lett.67, 415–432.

    Article  Google Scholar 

  • Richet, P. and Bottinga, Y. (1985). Heat capacity of aluminum-free silicate liquids. Geochim. Cosmochim. Acta 49, 471–486.

    Article  Google Scholar 

  • Richet, P. and Bottinga, Y. (1986). Thermochemical properties of silicate glasses and liquids: A review. Rev. Geophys.24, 1–25.

    Article  Google Scholar 

  • Richet, P., Bottinga, Y., and Téqui, C. (1984). Heat capacity of sodium silicate liquids. J. Amer. Ceram. Soc.67, C6-C8.

    Google Scholar 

  • Richet, P. and Fiquet, G. (1991). High-temperature heat capacity and premelting of minerals in the system Ca0-MgO-Al2O3-SiO2. J. Geophys. Res.96, 445–456.

    Article  Google Scholar 

  • Richet, P., Bottinga, Y., Deniélou, L., Petitet, J.P., and Téqui, C. (1982). Thermodynamic properties of quartz, cristobalite and amorphous Si02: Drop calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K. Geochim. Cosmochim. Acta 46, 2639–2658.

    Article  Google Scholar 

  • Richet, P., Robie, R.A., and Hemingway, B.S. (1986). Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of liquid silicates. Geochim. Cosmochim. Acta 50,1521–1533.

    Article  Google Scholar 

  • Richet, P., Robie, R.A., Rogez, J., Hemingway, B.S., Courtial, P., and Téqui, C. (1990). Thermodynamics of open networks: Ordering and entropy in NaAlSiO4 glass, liquid, and polymorphs. Phys. Chem. Mineral.17, 385–394.

    Google Scholar 

  • Richet, P., Robie, R.A., and Hemingway, B.S. (1991). Thermodynamic properties of wollastonite and CaSiO3 glass and liquid. Eur. J. Mineral.3, 475–484.

    Google Scholar 

  • Rivers, M.L. and Carmichael, I.S.E. (1987). Ultrasonic studies of silicate melts. J. Geophys. Res.92, 9247–9270.

    Article  Google Scholar 

  • Robie R.A., Hemingway, B.S., and Wilson, W.H. (1978). Low-temperature heat capacities and entropies of feldspar glasses and of anorthite. Amer. Mineral.63, 109–123.

    Google Scholar 

  • Rosenhauer, M., Scarfe, C.M., and Virgo, D. (1979). Pressure dependence of the glass transition temperature in glasses of diopside, albite, and sodium trisilicate composition. Carnegie Inst. Wash. Yearbook 78, 547–551.

    Google Scholar 

  • Roy, B.N. and Navrotsky, A. (1984). Thermochemistry of charge-coupled substitutions in silicate glasses: The systems M n+ 1/n A1O2-SiO2 (M = Li,Na,K,Rb,Cs,Mg,Ca,Sr,Ba,Pb). J. Amer. Ceram. Soc.67, 606–610.

    Article  Google Scholar 

  • Shermer, H.F. (1956). Thermal expansion of binary alkali silicate glasses. J. NBS.57, 97–101.

    Google Scholar 

  • Simon, F. (1931). Uber den Zustand der unterkuhlten Flussigkeiten und Glaser. Z. Anorg. Allg. Chem.203, 219–227.

    Article  Google Scholar 

  • Soga N., Yamanaka, H., and Kunugi, M. (1979). Equation of state of metasilicate glasses, in High-Pressure Science and Technology, K.D. Timmerhaus and M.S. Barber, eds., Plenum, New York. pp. 200–206.

    Google Scholar 

  • Stebbins, J.F. (1988). Effects of temperature and composition on silicate glass structure and dynamics: Si-29 NMR results. J. Non-Cryst. Solids 106, 359–369.

    Article  Google Scholar 

  • Stebbins, J.F. and Farnan, I. (1989). NMR spectroscopy in the earth sciences; structure and dynamics. Science 245,257–262.

    Article  Google Scholar 

  • Stebbins, J.F., Carmichael, I.S.E., and Moret, L.K. (1984). Heat capacity and entropies of silicate liquids and glasses. Contrib. Mineral Petrol.86,131–148.

    Article  Google Scholar 

  • Stolper, E.M. and Ahrens, T.J. (1987). On the nature of pressure-induced coordination changes in silicate melts and glasses. Geophys. Res. Lett.14,1231–1233.

    Article  Google Scholar 

  • Taniguchi, H. and Murase, T. (1987). Some physical properties and melt strutures in the system diopside-anorthite. J. Volcan. Geoth. Res.34, 51–64.

    Article  Google Scholar 

  • Tauber, P. and Arndt, J. (1987). The relationship between viscosity and temperature in the system anorthite-diopside. Chem. Geol.62, 71–81.

    Article  Google Scholar 

  • Téqui, C., Robie, R.A., Hemingway, B.S., Neuville, D.R., and Richet, P. (1991). Melting and thermodynamic properties of pyrope (Mg3Al2Si3 012). Geochim. Cosmochim. Acta 55, 1005–1010.

    Article  Google Scholar 

  • Tool, A.Q. and Eichlin, C.G. (1931). Variations caused in the heating curves of glass by heat treatment. J. Amer. Ceram. Soc. 14, 276–308.

    Article  Google Scholar 

  • Urbain, G., Bottinga, Y., and Richet, P. (1982). Viscosity of liquid silica, silicates and aluminosilicates. Geochim. Cosmochim. Acta 46, 1061–1072.

    Article  Google Scholar 

  • Waff, H.S. (1975). Pressure-induced coordination changes in magmatic liquids. Geophys. Res. Lett.2, 193–196.

    Article  Google Scholar 

  • Williams, Q., Knittle, E., Reichlin, R., Martin, S., and Jeanloz, R. (1990). Structural and electronic properties of Fe2SiO4 at ultrahigh pressures; amorphization and gap closure. J. Geophys. Res.95, 21549–21563.

    Article  Google Scholar 

  • Yinnon, H. and Cooper, A.R., Jr. (1980). Oxygen diffusion in multicomponent glass-forming silicates. Phys. Chem. Glasses 21, 204–211.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Richet, P., Neuville, D.R. (1992). Thermodynamics of Silicate Melts: Configurational Properties. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics