Skip to main content

Equations of State of Fluids at High Temperature and Pressure (Water, Carbon Dioxide, Methane, Carbon Monoxide, Oxygen, and Hydrogen)

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

Abstract

The problem of calculating properties of fluids at high temperature (T) and pressure (P) remains one of the main problems of physical chemistry. More than 100 years have passed since the contemporary approach of studying a fluid state was devised (van der Waals, 1881). The comprehensive state of understanding of the fluid state was described in a review of Barker and Henderson (1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.P. and Tildesley, D.J. (1987). Computer Simulation of Liquids. Clarendon Press, Oxford.

    Google Scholar 

  • Babb, S.E., Robertson, S.E., and Scott, G.T. (1968). PVT properties of gases at high pressures. Final Rept., Univ. Oklahoma Res. Inst.

    Google Scholar 

  • Barker, J.A. and Henderson, D. (1976). What is “liquid”? Understanding the states of matter. Rev. Mod. Phys. 48(4), 587–671.

    Article  Google Scholar 

  • Belonoshko, A.B. (1988). Molecular dynamics simulation of water on β-quartz surface. Zh. Phis. Khimii 62(1), 118–121 (in Russian).

    Google Scholar 

  • Belonoshko, A.B. (1989). The thermodynamics of the aqueous carbon dioxide fluid within thin pores. Geoch. Cosm. Acta 53(10), 2581–2590.

    Article  Google Scholar 

  • Belonoshko, A.B. and Shmulovich, K.I. (1986). Molecular dynamics study of dense fluid in micropores. Geokhimiya (11), 1523–1534 (in Russian).

    Google Scholar 

  • Belonoshko, A.B. and Shmulovich, K.I. (1987). Fluid phase in thin porous media under high pressure. Doklady Akademii Nauk SSSR 295(1), 625–629 (in Russian).

    Google Scholar 

  • Belonoshko, A.B. and Saxena, S.K. (1991a). A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: I. H20. Geoch. Cosmochim. Acta 55, 381–388.

    Article  Google Scholar 

  • Belonoshko, A.B. and Saxena, S.K. (1991b). A molecular dynamics study of the pressure-volume-temperature properties of supercritical fluids: II. CO2, CH4, CO, O2, H2. Geoch. Cosmochim. Acta. In press

    Google Scholar 

  • Ben-Amotz, D. and Herschbach, D.R. (1990). Estimation of effective diameters for molecular fluids. J. Phys. Chem. 94, 1038–1047.

    Article  Google Scholar 

  • Born, M. and Oppenheimer, J.R. (1927). 1. Zur Quantentheorie der Molekeln. Ann. Phys. (Leipz) 84, 457–484.

    Article  Google Scholar 

  • Bottinga, Y. and Richet, P. (1981). High pressure and temperature equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide. Amer. J. Sci. 281, 620–659.

    Article  Google Scholar 

  • Boublik, T. (1977). Progress in statistical thermodynamics applied to fluid phase. Fluid Phase Equilibria 1, 37–87.

    Article  Google Scholar 

  • Brown, W.B. (1987). Analytical representation of the excess thermodynamic equation of state for classical fluid mixtures of molecules interacting with α-exponential-six pair potentials up to high densities. J. Chem. Phys. 87, 566–577.

    Article  Google Scholar 

  • Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969). Thermodynamic properties of water to 1000°C and 10,000 bars. Paper 132, Geological Society of America. Washing ton, D.C.

    Google Scholar 

  • Carnahan, N.F. and Starling, K.E. (1969). Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635–636.

    Article  Google Scholar 

  • Carnahan, N.F. and Starling, K.E. (1972). Intermolecular repulsions and the equation of state for fluids. Amer. Inst. Chem. Eng. 18, 1184–1189.

    Google Scholar 

  • Delany, J.M. and Helgeson, H.C. (1978). Calculation of the thermodynamic consequences of dehydration in subducting oceanic crust to 100 Kb and > 800°C. Amer. J. Sci. 278, 638–686.

    Article  Google Scholar 

  • Dick, R.D. (1972a). Some Hugoniot data for liquid deuterium and hydrogen. Bull. Amer. Phys. Soc. 17, 1092.

    Google Scholar 

  • Dick, R.D. (1972b). Shock wave data for liquid hydrogen initially at 20 K. Bull. Amer. Phys. Soc., 17, 1302.

    Google Scholar 

  • Ferry, J.M. and Baumgartner, L. (1987). Thermodynamic models of molecular fluids at the elevated pressures and temperatures of crustal metamorphism. Rev. Mineral. 17, 325–365.

    Google Scholar 

  • Fiorese, G. (1980). Monte-Carlo calculations for molecular H2 in the fluid phase. J. Chem. Phys. 73, 6308–6315.

    Article  Google Scholar 

  • Fischer, J., Lustig, R., Breitenfelder-Manske, H. and Lemming, W. (1984). Influence of intermolecular potential parameters on orthobaric properties of fluids consisting of spherical and linear molecules. Mol. Phys. 52, 485–497.

    Article  Google Scholar 

  • Fuller, G.G. (1976). A modified Redlich-Kwong-Soave equation of state capable of representing the liquid state. Ind. Eng. Chem. Fundam. 15, 254–257.

    Article  Google Scholar 

  • Gorbaty, Yu. E. and Demjanetz, Yu. N. (1983). The pair correlation functions of water at a pressure of 1000 bar in the temperature range 25–500°C. Chem. Phys. Lett. 100, 450–453.

    Article  Google Scholar 

  • Grace, J.D. and Kennedy, G.C. (1967). The melting curve of five gases to 30 Kbar. J. Phys. Chem. Solids 28, 977–981.

    Article  Google Scholar 

  • Grevel, K.-D. (1990). A modified Redlich-Kwong equation of state for methane at temperatures between 150 K and 1500 K and pressures up to 300 Kbar, in Thermodynamic Data Systematics, Uppsala Univ. Symp., Wik, June 10–14, 1990, abstract.

    Google Scholar 

  • Halbach, H. and Chatterjee, N.D. (1982). An empirical Redlich-Kwong type equation of state for water to 1000°C and 200 Kbar. Contrib. Mineral. Petrol. 79, 337–345.

    Article  Google Scholar 

  • Hamann, S.D. (1981). Properties of electrolyte solutions at high pressures and temperatures, in Physics and Chemistry of the Earth, D.T. Rickard and F.E. Wickman, eds., Vol. 13, Oxford, pp. 89–112.

    Google Scholar 

  • Hill, P.G. (1990). A unified fundamental equation for the thermodynamic properties of H2O. J. Phys. Chem. Data 19, 1233–1274.

    Article  Google Scholar 

  • Hill, T.L. (1962). An Introduction to Statistical Thermodynamics. Addison-Wesley, Reading, Mass.

    Google Scholar 

  • Hollo way, J.R. (1977). Fugacity and activity of molecular species in super-critical fluids, in Thermodynamics in Geology, D.G. Fraser, ed., Dordrecht-Holland, pp. 161–181.

    Google Scholar 

  • Holmes, N.C., Nellis, W.J, Graham, W.B, and Walrafen, C.E. (1985). Spontaneous Raman scattering from shocked water. Phys. Rev. Lett. 55, 2433–2436.

    Article  Google Scholar 

  • Johnson, J.D. and Shaw, M.S. (1985). Thermodynamics using effective spherical potentials for CO2 anisotropics. J. Chem. Phys. 83, 1271–1275.

    Article  Google Scholar 

  • Jorgensen, W.L, Buckner, J.K., Boudon, S, and Tirado-Rives, J. (1988) Efficient computation of absolute free energy of binding by computer simulations. Application to the methane dimer in water. J. Chem. Phys. 89, 3742–3746.

    Article  Google Scholar 

  • Jusa, I, Kmonicek, V, and Sifner, O. (1965). Measurements of the specific volume of carbon dioxide in the range of 700 to 4000 bar and 50 to 475°C. Physica 31, 1735–1744.

    Article  Google Scholar 

  • Kalinichev, A.G. (1986). Monte Carlo study of the thermodynamics and structure of dense supercritical water. Internat. J. Thermophys. 7, 887–900.

    Article  Google Scholar 

  • Kalinichev, A.G. and Heinzinger, K. (1991). Computer simulation of aqueous fluids at high temperature and pressure, in Advance in Physical Geochemistry, S.K. Saxena, ed. Vol. 10, Springer-Verlag, New York.

    Google Scholar 

  • Kataoka, J. (1987). Studies of liquid water by computer simulations. V. Equation of state of fluid water with Caravetta-Clementi potential. J. Chem. Phys. 87, 589–596.

    Article  Google Scholar 

  • Kerrick D.M. and Jacobs G.K. (1981). A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures. Amer. J. Sci. 281(6), 735–767.

    Article  Google Scholar 

  • Kortbeek, P.J, Biswas, S.N, and Trappeniers, N.J. (1986). pVT and sound velocity measurements for CH4 up to 10 kbar. Physica 139/140B, 109–112.

    Google Scholar 

  • Kubicki, J.D. and Lasaga, A.C. (1990). Molecular dynamics and diffusion in silicate melts, in Advances in Physical Geochemistry, J. Ganguly, ed. Vol. 8. Springer-Verlag, New York. 1–50.

    Google Scholar 

  • Lennard-Jones, J.E, and Ingham, A.E. (1925). On the calculation of certain crystal potential constants, and on the cubic crystal of least potential energy. Proc. Roy. Soc. 107A, 636–653.

    Google Scholar 

  • Luckas, M. and Lucas, K. (1989). Thermodynamic properties of fluid carbon dioxide from the SSR-MPA potential. Fluid Phase Equilibria 45, 7–23.

    Article  Google Scholar 

  • Lysenga, G.A., Ahrens, T.J., Nellis, W.J., and Mitchell, A.C. (1982). The temperature of shock-compressed water. J. Chem. Phys. 76, 6282–6286.

    Article  Google Scholar 

  • Mel’nik, Yu. P. (1972). Thermodynamic parameters of compressed gases and meta-morphic reactions involving water and carbon dioxide. Geokhimiya (6), 654–662 (in Russian).

    Google Scholar 

  • Mel’nik, Yu. P. (1978a). Thermodynamic properties of carbon monoxide and methane at high temperatures and pressures-a new correlation based on the principle of corresponding states. Geokhimiya (11), 1677–1691 (in Russian).

    Google Scholar 

  • Mel’nik, Yu. P. (1978b). Termodinamicheskiye svoistva gazov v usloviyakh glubinnogo petrogenezisa. Naukova Dumka, Kiev (in Russian).

    Google Scholar 

  • Mills R.L., Liebenberg J.C., Bronson J.C., and Schmidt L.C. (1977). Equation of state of fluid n-H2 from P-V-T and sound velocity measurements to 20 Kbar. J. Chem. Phys. 66, 3076–3084.

    Article  Google Scholar 

  • Mitchell, A.C. and Nellis, W.J. (1982). Equation of state and electrical conductivity of water shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76, 6273–6281.

    Article  Google Scholar 

  • Nellis, W.J. and Mitchell, A.C. (1980). Shock compression of liquid argon, nitrogen and oxygen to 90 GPa (900 Kbar). J. Chem. Phys. 73, 6137–6145.

    Article  Google Scholar 

  • Nellis, W.J., Ree, F.H., van Thiel, M, and Mitchell, A.C. (1981). Shock compression of liquid carbon monoxide and methane to 90 GPa (900 kbar). J. Chem. Phys. 75, 3055–3063.

    Article  Google Scholar 

  • Nellis, W.J., Ross, M., Mitchell, A.C., van Thiel, M., Young, D.A., Ree, F.H., and Trainor, R.J. (1983). Equation of state for molecular hydrogen and deuterium from shock-wave experiments to 760 Kbar. Phys. Rev. A2, 608–611.

    Google Scholar 

  • Presnall, D.C. (1969). Pressure-volume-temperature measurements on hydrogen from 200°C to 600°C and up to 1800 atmospheres. J. Geophys. Res. 74, 6026–6033.

    Article  Google Scholar 

  • Radousky, H.B., Mitchell, A.C., and Nellis, W.J. (1990). Shock temperature measurements of planetary ices: NH3, CH4 and “synthetic Uranus.” J. Chem. Phys. 93, 8235–8239.

    Article  Google Scholar 

  • Redlich, O. and Kwong, J.N.S. (1949). On the thermodynamics of solutions: V. An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244.

    Article  Google Scholar 

  • Ree, F.H. (1982). Molecular interaction of dense water at high temperature. J. Chem. Phys. 76, 6287–6302.

    Article  Google Scholar 

  • Rice, M.H. and Walsh, J.M. (1957). Equation of state of water to 250 Kilobars. J. Chem. Phys. 26, 824–830.

    Article  Google Scholar 

  • Rimbach, H. and Chatterjee, N.D. (1987). Equations of state for H2, H2O, and H2-H2O fluid mixtures at temperatures above 0.01°C and at high pressures. Phys. Chem. Min. 14, 560–569.

    Article  Google Scholar 

  • Robertson, S.L. and Babb, S.E. Jr. (1970). Isotherms of carbon monoxide to 10 Kbar and 300°C. J. Chem. Phys. 53, 1094–1097.

    Article  Google Scholar 

  • Ross, M. (1987). Physics of dense fluids, in High Pressure Chemistry and Biochemistry, R. van Eldik and J. Jonas, eds., Reidel, Dordrecht, pp. 9–49.

    Google Scholar 

  • Ross, M. and Ree, F.H. (1980). Repulsive forces of simple molecules and mixtures at high density and temperature. J. Chem. Phys. 73, 6146–6152.

    Article  Google Scholar 

  • Ross, M., Ree, F.H., and Young, D.A. (1983). The equation of state of molecular hydrogen at very high density. J. Chem. Phys. 79, 1487–1494.

    Article  Google Scholar 

  • Saager, B., Lotfi, A., Bohn, M, Nguyen, V.N., and Fischer, J. (1990). Prediction of gas PVT data with effective intermodular potentials using the Haar-Shenker-Kohler equation and computer simulations. Fluid Phase Equilibria 54, 237–246.

    Article  Google Scholar 

  • Saager, B. and Fischer, J. (1990). Predictive power of effective intermolecular pair potentials: MD simulation results for methane up to 1000 MPa. Fluid Phase Equilibria 57, 35–46.

    Article  Google Scholar 

  • Saul, A. and Wagner, W. (1989). A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25,000 MPa. J. Phys. Chem. Ref. Data 18(4), 1537–1563.

    Article  Google Scholar 

  • Saxena, S.K. and Fei, Y. (1987a). High pressure and high temperature fugacities. Geochim. Cosmochim. Acta, 51, 783–791.

    Article  Google Scholar 

  • Saxena, S.K. and Fei, Y. (1987b). Fluids at crustal pressures and temperatures. I. Pure species. Contrib. Mineral. Petrol. 95, 370–375.

    Article  Google Scholar 

  • Shmonov, V.M. and Shmulovich, K.I. (1974). Molal volumes and equations of state of CO2 at temperatures from 100 to 1,000°C and pressures from 2,000 to 10,000 bars. Akad Nauk SSSR Doklady 217, 205–209 (in Russian).

    Google Scholar 

  • Shmulovich, K.I. and Shmonov, V.M. (1978). Tables of Thermodynamic Properties of Gases and Liquids, Carbon Dioxide. Moscow, Standard Press (in Russian).

    Google Scholar 

  • Shmulovich, K.I, Tereschenko, E.N, and Kalinichev, A.G. (1982). Equation of state and isochores of nonpolar gases up to 2000 K and 10 GPa. Geokhimija (11), 1598–1613 (in Russian).

    Google Scholar 

  • Spiridonov, G.A. and Kvasov, I.S. (1986). Empirical and semiempirical equations of state for gases and liquids. Rev. Thermophy. Prop. Matt. 57(1), 45–116, (in Russian).

    Google Scholar 

  • Stillinger, F.H. and Rahman, A. (1974). Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60, 1545–1557.

    Article  Google Scholar 

  • Stishov, S.M. (1974). Thermodynamics of melting of pure species. Uspekhi Fiz. Nauk 114, 3–29 (in Russian).

    Google Scholar 

  • Svehla, R.A. (1962). Lennard-Jones potential parameters from viscosity data. NASA Tech. R-132, Lewis Res. Ctr, Cleveland, Ohio.

    Google Scholar 

  • Sysoev, V.A. (1980). Isothermal equation of state for dense gases and liquids. One-component systems. Ukrainskii Phiz. Zh. 25(1), 123–130 (in Russian).

    Google Scholar 

  • Tait, P.S. (1889). On the virial equation for molecular forces, being Part IV. of a paper on the foundations of the kinetic theory of gases. Proc. Roy. Soc. Edin. 16, 65–72.

    Google Scholar 

  • Tziklis, D.S. (1977). Dense Gases. Moscow, Khimija Press (in Russian).

    Google Scholar 

  • Tziklis, D.S. and Koulikova, A.I. (1965). Oxygen compressibility determination at pressure to 10,000 atm and temperature to 400°C. Zh. Phiz. Khimii 39, 1752–1756 (in Russian).

    Google Scholar 

  • Tziklis, D.S, Maslennikova, V.Y, Gavrilov, S.D., Egorov, A.N, and Timofeeva G.V. (1975). Molar volumes and equation of state of molecular hydrogen at high pressures. Dokl. Akad. Nauk SSSR 220, 189–191 (in Russian).

    Google Scholar 

  • van der Waals, J.H. (1881). Die Continuitat des Gasformigen und Flussigen Zustcindes. Leipzig, Barth.

    Google Scholar 

  • van Thiel, M. and Wasley, M. (1964). Compressibility of liquid hydrogen to 40,000 atm and 1100 K. U.S. Atomic Energy Comm., Univ. Calif, Livermore.

    Google Scholar 

  • van Waveren, G.M., Michels, J.P.J, and Trappaniers, N.J. (1986). Molecular dynamics simulation of CH4 in the dense fluid phase. Physica B 139/140, 144–147.

    Article  Google Scholar 

  • Vasserman, A.A. and Rabinovitch, V.A. (1968). Thermophysical Properties of Liquid Air and Its Components. Moscow, Standart Press (in Russian).

    Google Scholar 

  • Verlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103.

    Article  Google Scholar 

  • Verlet, L. (1968). Computer “experiments” on classical fluids. II. Equilibrium correlation functions. Phys. Rev. 165, 201–214.

    Article  Google Scholar 

  • Vukalovich, M.P., Altunin, V.V., and Timoshenko, N.I. (1963). Specific volume of CO2 at high pressure and temperature. Teploenergetika (10), 92–93 (in Russian).

    Google Scholar 

  • Walsh, J.M. and Rice, M.H. (1957). Dynamic compression of liquids from measurements of strong shock waves. J. Chem. Phys. 26, 815–823.

    Article  Google Scholar 

  • Weeks, J.D., Chandler, D., and Andersen, H.C. (1971). Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54, 5237–5246.

    Article  Google Scholar 

  • Zubarev, V.N. and Telegin, G.S. (1962). Shock compressibility of liquid nitrogen and solid carbon dioxide. Doklady Akad Nauk SSSR 142, 309–312 (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Belonoshko, A.B., Saxena, S.K. (1992). Equations of State of Fluids at High Temperature and Pressure (Water, Carbon Dioxide, Methane, Carbon Monoxide, Oxygen, and Hydrogen). In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics