Skip to main content

Estimating Thermodynamic Properties by Molecular Dynamics Simulations: The Properties of Fluids at High Pressures and Temperatures

  • Chapter
Thermodynamic Data

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 10))

  • 426 Accesses

Abstract

Computer simulations of geochemical reactions are beginning to enable experimentalists to explore processes which are difficult or impossible to reproduce in the laboratory because of either their kinetics or the physical conditions involved. In some cases, it has even been claimed that the calculated data are more reliable than available experimental results (Lie and Clementi, 1986), and in the case of H2O, such a claim was vindicated by subsequent better experimental data (Soper and Phillips, 1986). The widespread availability of mini-super-computers has made such calculations tractable in most laboratories, and since their first applications to geochemistry in the mid-1970s (Woodcock et al., 1976; Matsui et al., 1981; Angell et al., 1982), very rapid progress has been made. Recent reviews of applications to silicate minerals (Parker and Price, 1990) and diffusion in silicate melts (Kubicki and Lasaga, 1990) have appeared and give good summaries of these areas. It is predictable that such calculations will become increasingly important to experimentalists over the next few years as a prelude to designing new experiments or to help pinpoint crucial experiments in difficult areas so that a good understanding of simulation techniques and their basic assumptions will be essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, M.P. and Tildesley, D.J. (1987). Computer Simulation of Liquids. Clarendon Press, Oxford.

    Google Scholar 

  • Angell, C.A., Cheeseman, P. A., and Tammaddon, S. (1982). Pressure enhancement of ion mobilities in liquid silicates from computer simulation studies to 800 kbar. Science 218, 885–887.

    Article  Google Scholar 

  • Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969). Thermodynamic properties of water to 1000°C and 10,000 bars. Paper 132, Boulder, Colorado. Geological Society America.

    Google Scholar 

  • Beeman, D. (1976). Some multistep methods for use in molecular dynamics calculations. J. Comput. Physics 20, 130–139.

    Article  Google Scholar 

  • Belak, J., LeSar, R., and Etters, R.D. (1990). Calculated thermodynamic properties and phase transitions of solid N2 at temperatures 0 < T < 300 K and pressures 0 < P < 100 GPa. J. Chem. Phys. 92, 5430–5441.

    Article  Google Scholar 

  • Belonoshko, A. and Saxena, S.K. (1991). A molecular dynamics study of the pressure-volume-temperature properties of super-critical fluids: I. H2O. Geochim. Cosmochim. Acta 55, 381–387.

    Article  Google Scholar 

  • Benedict, W.S., Gailar, N., and Plyler, E.K. (1956). Rotation-vibration spectra of deuterated water vapor. J. Phys. Chem. 24, 1139–1165.

    Article  Google Scholar 

  • Bottinga, Y. and Richet, P. (1981). High pressure and temperature equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide. Amer. J. Sci. 281, 615–660.

    Article  Google Scholar 

  • Berthault, F. (1952). L’energie electrostatique de reseaux ioniques. J. Phys Radium 13, 499–505.

    Article  Google Scholar 

  • Brodholt, J. and Wood, B.J. (1990). Molecular dynamics of water at high temperatures and pressures. Geochim. Cosmochim. Acta 54, 2611–2616.

    Article  Google Scholar 

  • Demontis, P., LeSar, R., and Klein, M.L. (1988). New high pressure phases of ice. Phys. Rev. Lett. 60, 2284–2287.

    Article  Google Scholar 

  • Fraser, D.G. and Refson, K. (1990). The thermodynamic properties of water to 300 kb by molecular dynamics simulation. Terra Abstracts 2, 10.

    Google Scholar 

  • Halbach, H. and Chatterjee, N.D. (1982). An empirical Redlich-Kwong equation of state for water to 1000°C and 200 kbar. Contrib. Mineral. Petrol. 79, 337–345.

    Article  Google Scholar 

  • Hamman, S.D. (1981). Properties of electrolyte solutions at high pressures and temperatures, in Physics and Chemistry of the Earth, Vol. 13, (D.T. Rickard and F.E. Wickman, eds, Oxford, pp. 89–112.

    Google Scholar 

  • Holloway, J.R. (1977). Fugacity and activity of molecular species in super-critical fluids, in Thermodynamics in Geology, D.G. Fraser, ed., D. Reidel, Dordrecht, pp. 161–181.

    Google Scholar 

  • Holloway, J.R. (1981). Volatile interactions in magmas, in Thermodynamics of Minerals and Melts, R.C. Newton et al., eds., Advances in Physical Geochemistry, Vol. I, pp. 273–293. Springer Verlag, New York.

    Google Scholar 

  • Impey, R.W., Klein, M.L., and McDonald, I.R. (1981). Molecular dynamics study of the structure of water at high temperatures and density. J. Chem. Phys. 74, 647–652.

    Article  Google Scholar 

  • Jorgensen, W.A. (1981). Transferable intermolecular potential functions for water, alcohol and ethers. Application to liquid water. J. Amer. Chem. Soc. 103, 335–340.

    Article  Google Scholar 

  • Jorgensen, W.A. (1982). Revised TIPS for simulations of liquid water and aqueous solutions. J. Chem. Phys. 77, 4156–4163.

    Article  Google Scholar 

  • Jorgensen, W.A. and Madura, J.D. (1985). Temperature and size dependence for Monte-Carlo simulations of TIP4P water. Mol. Phys. 56, 1381–1392.

    Article  Google Scholar 

  • Jorgensen, W.A., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. (1983). Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79 (1983). 926–935

    Article  Google Scholar 

  • Kerrick, D.M. and Jacobs, G.K. (1981). A modified Redlich-Kwong equation for H2O, CO2 and H2O-CO2 mixtures at elevated pressures and temperatures. Amer. J. Sci. 281, 735–767.

    Article  Google Scholar 

  • Kubicki, J.D. and Lasaga, A.C. (1990). Molecular dynamics and diffusion in silicate melts, in Advances in Geochemistry, Vol. 8, J. Ganguly, ed., Springer-Verlag, New York, pp. 1–50.

    Google Scholar 

  • Lie, G.C. and Clementi, E. (1986). Molecular dynamics simulation of liquid water with an ab initio flexible water-water interaction potential. Phys. Rev. A 33, 2679–2693.

    Article  Google Scholar 

  • Lysenga, G.A., Ahrens, T.J., Nellis, W.J., and Mitchell, A.C. (1982). The temperature of shock-compressed water. J. Chem. Phys. 76, 6282–6286.

    Article  Google Scholar 

  • Madura, J.D., Pettitt, B.M., and Calef, D.F. (1988). Water under high pressure. Mol. Phys. 64, 325–336.

    Article  Google Scholar 

  • Matsui, Y., Kawamura, K., and Syono, Y. (1981). Molecular dynamics calculations applied to silicate systems: Molten and vitreous MgSiO3 and Mg2SiO4, in High Pressure Research in Geophysics, Advances in Earth and Planetary Science, Vol. 12, S. Akimoto and M.H. Manghnani, eds., Reidel, Dordrecht, pp. 551–524.

    Google Scholar 

  • Matsuoka, O., Clementi, E., and Yoshimine, M. (1976). Study of the water dimer potential surface. J. Chem. Phys. 64, 1351–1361.

    Article  Google Scholar 

  • Mitchell, A.C. and Nellis, W.J. (1982). Equation of state and electrical conductivity of water shocked to the 100 GPa (1 Mbar) pressure range. J. Chem. Phys. 76, 6273–6281.

    Article  Google Scholar 

  • Nosé, S. and Klein, M.L. (1983). Structural transformations in solid nitrogen at high pressures. Phys. Rev. Lett. 50, 1207–1210.

    Article  Google Scholar 

  • Parker, S.C. and Price, G.D. (1990). Computer modelling of the structure and thermodynamic properties of silicate minerals, in Computer Modelling of Fluids, Polymers and Solids, C.R.A. Catlow, S.C. Parker, and M.P. Allen, eds., Series C, Mathematical and Physical Sciences, Vol. 293, Kluwer, Dordrecht, pp. 405–429.

    Google Scholar 

  • Reddy, M.R. and Berkowitz, M. (1987). Structure and dynamics of high-pressure water. J. Chem. Phys. 87, 6682–6686.

    Article  Google Scholar 

  • Redlich, O. and Kwong, J.N.S. (1949). An equation of state. Fugacities of gaseous solutions. Chem. Rev. 44, 233–244.

    Article  Google Scholar 

  • Refson, K. and Pawley, G.S. (1987). Molecular dynamics studies of the condensed phases of n-butane and their transitions. Mol. Phys. 61, 669–692.

    Article  Google Scholar 

  • Rice, M.H. and Walsh, J.M. (1957). Equation of state of water to 250 Kilobars. J. Chem. Phys. 26, 824–830.

    Article  Google Scholar 

  • Rigby, M., Smith, E.B., Wakeham, W.A, and Maitland, G.C. (1986). The Forces Between Molecules. Clarendon Press, Oxford.

    Google Scholar 

  • Ross, M. and Ree, F.H. (1980). Repulsive forces of simple molecules and mixtures at high density temperature. J. Chem. Phys. 73, 6146–6152.

    Article  Google Scholar 

  • Saxena, S.K. and Fei, Y. (1987). High pressure and high temperature fugacities. Geochim. Cosmochim. Acta 51, 783–791.

    Article  Google Scholar 

  • Soper, A.K. and Phillips, M.G. (1986). A new determination of the structure of water at 25°C. Chem. Phys. 107, 47–60.

    Article  Google Scholar 

  • Soper, A.K. and Silver, R.N. (1982). Hydrogen-hydrogen pair correlation function in liquid water. Phys. Rev. Lett. 49, 471–474.

    Article  Google Scholar 

  • Thiessen, W.E. and Narten, A.H. (1982). Neutron diffraction study of light and heavy water mixtures. J. Chem. Phys. 77, 2656–2662.

    Article  Google Scholar 

  • Wong, P.T.T. and Whalley, E.H. (1976). Raman spectrum of ice VIII. J. Chem. Phys. 64, 2359–2366.

    Article  Google Scholar 

  • Wood, B.J. and Fraser, D.G. (1976). Elementary Thermodynamics for Geologists. Oxford University Press, Oxford.

    Google Scholar 

  • Woodcock, L.V., Angell, C.A., and Cheeseman, P. (1976). Molecular dynamics studies of the vitreous state: Ionic systems and silica. J. Chem. Phys. 65, 1565–1567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Fraser, D.G., Refson, K. (1992). Estimating Thermodynamic Properties by Molecular Dynamics Simulations: The Properties of Fluids at High Pressures and Temperatures. In: Saxena, S.K. (eds) Thermodynamic Data. Advances in Physical Geochemistry, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2842-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2842-4_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7692-0

  • Online ISBN: 978-1-4612-2842-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics