Skip to main content

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 129 Accesses

Abstract

The transplantation of nuclei from one mammalian cell to another has provided a valuable tool for understanding developmental biology and for production of nearly identical animals useful in food production or research. The initial use of nuclear transfer was in amphibians 40 years ago when Briggs and King (1) reported that blastula stage nuclei transplanted to oocytes could direct development to the tadpole stage. They were testing the original hypothesis of Spemann (2), who suggested that cell totipotency and its loss with differentiation could be tested by transfer of nuclei from progressively advanced stages of development into enucleated oocytes. Continued study of cell totipotency in amphibia resulted in production of fertile frogs from blastula nuclei (3, 4), thereby demonstrating their totipotency. In rare cases even older embryonic and young larval cell nuclei from Xenopus directed formation of fertile frogs (5). However, nuclei from differentiated frog cells could not direct complete development (6). Completion of development failed in spite of the fact that transplanted nuclei were reprogrammed in nuclear composition by translocation of proteins from the oocyte cytoplasm (7, 8), and in a few cases individual genes turned off by differentiation were again expressed (9, 10). Nuclear transfer continues to be a useful tool in amphibia for the study of nuclear-cytoplasmic interactions, cell differentiation, and totipotency, as well as mechanisms regulating gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs’ eggs. Proc Natl Acad Sci USA 1952;38:455–463.

    Article  PubMed  CAS  Google Scholar 

  2. Spemann H. Embryonic development and induction. New York: Hafner, 1938:210–211.

    Google Scholar 

  3. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Dev Biol 1962;4:256–273.

    Article  PubMed  CAS  Google Scholar 

  4. McKinnel RG. Intraspecific nuclear transplantation in frogs. J Hered 1962;53:199–207.

    Google Scholar 

  5. Gurdon JB. Nuclear transplantation in eggs and oocytes. J Cell Sci 1986;4(suppl):287–318.

    CAS  Google Scholar 

  6. DiBerardino MA. Genomic potential of differentiated cells analyzed by nuclear transplantation. Am Zool 1987;27:623–644.

    Google Scholar 

  7. DiBerardino MA, Hoffner NJ. Nucleocytoplasmic exchange of nonhistone proteins in amphibian embryos. Exp Cell Res 1975;94:235–252.

    Article  CAS  Google Scholar 

  8. Leonard RA, Hoffner NJ DiBerardino MA. Induction of DNA synthesis in amphibian erythroid nuclei in Rana eggs following conditioning in meiotic oocytes. Dev Biol 1982;92:343–355.

    Article  PubMed  CAS  Google Scholar 

  9. Wakefield L, Gurdon JB. Cytoplasmic regulation of 5S RNA genes in nuclear-transplant embryos. EMBO J 1983;2:1613–1619.

    PubMed  CAS  Google Scholar 

  10. Gurdon JB, Brennan S, Fairman S, Mohun TJ. Transcription of muscle specific actin genes in early Xenopus development: nuclear transplantation and cell dissociation. Cell 1984;38:691–700.

    Article  PubMed  CAS  Google Scholar 

  11. Illmensee K, Hoppe PC. Nuclear transplantation in Mus musculus: developmental potential of nuclei from preimplantation embryos. Cell 1981;23:9–18.

    Article  PubMed  CAS  Google Scholar 

  12. McGrath J, Solter D. Inability of mouse blastomere nuclei transferred to enucleated zygotes to support development in vitro. Science 1984;226:1317–1319.

    Article  PubMed  CAS  Google Scholar 

  13. Robl JM, Gilligan B, Critser ES, First NL. Nuclear transplantation in mouse embryos: assessment of recipient cell stage. Biol Reprod 1986;34:733–739.

    Article  PubMed  CAS  Google Scholar 

  14. Tsunoda Y, Yasui T, Shioda Y, Nakamura K, Uchida T, Sugie T. Full term development of mouse blastomere nuclei transplanted into enucleated two-cell embryos. J Exp Zool 1987;242:147–151.

    Article  PubMed  CAS  Google Scholar 

  15. Kono T, Kwon OY, Nakahara T. Development of enucleated mouse oocytes reconstituted with embryonic nuclei. J Reprod Fertil 1991;93:165–172.

    Article  PubMed  CAS  Google Scholar 

  16. Willadsen SM. Nuclear transplantation in sheep embryos. Nature 1986;320:63–65.

    Article  PubMed  CAS  Google Scholar 

  17. Smith LC, Wilmut T. Influence of nuclear and cytoplasmic activity on the development in vivo of sheep embryos after nuclear transplantation. Biol Reprod 1989;40:1027–1035.

    Article  PubMed  CAS  Google Scholar 

  18. Prather RS, Barnes FL, Sims ML, Robl JM, Eyestone WH, First NL. Nuclear transfer in the bovine embryo: assessment of donor nuclei and recipient oocyte. Biol Reprod 1987;37:859–866.

    Article  PubMed  CAS  Google Scholar 

  19. Willadsen SM. Cloning of sheep and cow embryos. Genome 1989;31:956–962.

    Article  PubMed  CAS  Google Scholar 

  20. Bondioli KR, Westhusin ME, Looney CR. Production of identical bovine offspring by nuclear transfer. Theriogenology 1990;33:165–174.

    Article  Google Scholar 

  21. Prather RS, Sims MM, First NL. Nuclear transplantation in early pig embryos. Biol Reprod 1989;41:414–418.

    Article  PubMed  CAS  Google Scholar 

  22. Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbit embryos. Biol Reprod 1988;39:657–664.

    Article  PubMed  CAS  Google Scholar 

  23. Smith C. Cloning and genetic improvement of beef cattle. Anim Prod 1989;49:49–62.

    Article  CAS  Google Scholar 

  24. Robl JM, Prather R, Barnes F, et al. Nuclear transplantation in bovine embryos. J Anim Sci 1987;64:642–647.

    PubMed  CAS  Google Scholar 

  25. Prather RS, Sims MM, First NL. Nuclear transplantation in the pig embryo: nuclear swelling. J Exp Zool 1990;255:355–358.

    Article  PubMed  CAS  Google Scholar 

  26. Collas P, Robl JM. Relationship between nuclear remodeling and development in nuclear transplant rabbit embryos. Biol Reprod 1991;45:455–465.

    Article  PubMed  CAS  Google Scholar 

  27. Chang D, Chaffy BM, Saunders JA, Sauers AE. Handbook of electroporation and electrofusion. San Diego, CA: Academic Press, 1991.

    Google Scholar 

  28. Northey DL, Leibfried-Rutledge ML, Nuttleman PR, First NL. Theriogenology 1992;37(1):266 [Abstract].

    Article  Google Scholar 

  29. Tsunoda Y, Shioda Y, Onodera M, NaKamyra M, Ochioa T. Differential sensitivity of mouse pronuclei and zygote cytoplasm to Hoechst staining and ultraviolet irradiation. J Reprod Fertil 1988;82:173–178.

    Article  PubMed  CAS  Google Scholar 

  30. Westhusin ME, Lavanduski MJ, Scarbrough R, Looney CR, Bondioli KR. Viable embryos and normal calves after nuclear transfer into Hoechst stained enucleated demi oocytes of cows. J Reprod Fertil 1992;95:475–480.

    Article  PubMed  CAS  Google Scholar 

  31. Ware CB, Barnes FL, Maiki-Laurila M, First NL. Age dependence of bovine oocyte activation. Gamete Res 1989;22:265–275.

    Article  PubMed  CAS  Google Scholar 

  32. Hagen DR, Prather RS, First NL. Electrical activation of in vitro matured pig oocytes. Mol Reprod Dev 1991;28:70–73.

    Article  PubMed  CAS  Google Scholar 

  33. Collas P, Robl J. Factors affecting the efficiency of nuclear transplantation in the rabbit embryo. Biol Reprod 1991;43:877–884.

    Article  Google Scholar 

  34. Kubiak JZ. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev Biol 1989;136:537–545.

    Article  PubMed  CAS  Google Scholar 

  35. Susko-Parrish J, Nuttleman P, Leibfried-Rutledge ML. Effect of bovine oocyte aging in vitro on development [Abstract]. Biol Reprod 1991;44(suppl 1):156.

    Google Scholar 

  36. Nagai T. Parthenogenetic activation of cattle follicular oocytes in vitro with ethanol. Gamete Res 1987;16:243–249.

    Article  PubMed  CAS  Google Scholar 

  37. First NL, Leibfried-Rutledge ML, Northey DL, Nuttleman PR. Use of in vitro matured oocytes 24hr of age in bovine nuclear transfer [Abstract]. Theriogenology 1992;37(1):211.

    Article  Google Scholar 

  38. Kaufman MH. 1. Parthenogenesis: a system facilitating understanding of factors that influence early mammalian development. In: Harrison RG, Holmnes RL, eds. Progress in anatomy; vol 1. London: Cambridge University Press, 1981:1–34.

    Google Scholar 

  39. Chang MC, Fernandez-Cano L. Effects of delayed fertilization on the development of pronucleus and the segmentation of hamster ova. Anal Rec 1958;132:307–319.

    Article  CAS  Google Scholar 

  40. Keefer C, Schuetz AW. Spontaneous activation of ovulated rat oocytes during in vitro culture. J Exp Zool 1982;224:371–377.

    Article  PubMed  CAS  Google Scholar 

  41. Sims MM, Rosenkrans CF Jr, First NL. Development in vitro of bovine embryos derived from nuclear transfer [Abstract]. Theriogenology 1991;35(1):272.

    Article  Google Scholar 

  42. Stice SL, Keefer C. Improved rates for bovine nucleus transfer embryos using cold shock activated oocytes [Abstract]. Biol Reprod 1992;46(1):166.

    Google Scholar 

  43. Wolfe BA, Kraemer DC. Methods in bovine nuclear transfer. Theriogenology 1992;37(1):5–15.

    Article  Google Scholar 

  44. Aktas H, Leibfried-Rutledge ML, Wheeler MB. Bovine oocytes arrested in meiosis in vitro retain developmental capacity [Abstract]. Biol Reprod 1991;44(1):75.

    Google Scholar 

  45. Czolowska R, Modlinski JA, Tarkowski AK. Behaviour of thymocyte nuclei in non-activated and activated mouse oocytes. J Cell Sci 1984;69:129–134.

    Google Scholar 

  46. Czolowska R, Waksmundzka M, Kubiak JZ, Tarkowski AK. Chromosome condensation activity in ovulated metaphase II mouse oocytes assayed by fusion with interphase blastomeres. J Cell Sci 1986;84:129–138.

    PubMed  CAS  Google Scholar 

  47. Szollosi D, Czolowska R, Szollosi MS, Tarkowski AK. Remodeling of mouse thymocyte nuclei depends on the time of their transfer into activated, homologous oocytes. J Cell Sci 1988;91:603–613.

    PubMed  Google Scholar 

  48. Usui N, Yanagimachi R. Behavior of hamster sperm nuclei incorporated into eggs at various stages of maturation, fertilization and early development. J Ultrastruct Mol Struct Res 1976;57:276–288.

    CAS  Google Scholar 

  49. Komar A. Fertilization of parthenogenetically activated mouse eggs, I. Behavior of sperm nuclei in the cytoplasm of parthenogenetically activated mouse eggs. Exp Cell Res 1982;139:361–367.

    CAS  Google Scholar 

  50. Szollosi D. Mammalian eggs aging in the follopian tubes. In: Aging gametes. Basel: Karger, 1975:98–121.

    Google Scholar 

  51. Leibfried-Rutledge ML, Northey DL, Nuttlemann PR, First NL. Processing of donated nucleus and timing of post-activation events differ between recipient oocytes 24 or 42hr of age [Abstract]. Theriogenology 1992; 37(1):244.

    Article  Google Scholar 

  52. Fraser LR. Rate of fertilization in vitro and subsequent nuclear development as a function of the post-ovulatory age of the mouse egg. Reprod Fertil 1979;55:153–160.

    Article  CAS  Google Scholar 

  53. Shalgi R, Kaplan R, Kraicer PF. The influence of postovulatory age on the rate of cleavage in in-vitro fertilized rat oocytes. Gamete Res 1985;11:99–106.

    Article  Google Scholar 

  54. Modlinski JA. The fate of inner cell mass and trophectoderm nuclei transferred to fertilized mouse eggs. Nature 1981;273:466–467.

    Article  Google Scholar 

  55. Navara CS, Sims MM, First NL. Timing of polarization in bovine embryos and developmental potential of polarized blastomeres [Abstract 82]. Biol Reprod 1992;46:71.

    Google Scholar 

  56. Evans MJ, Notarianni E, Lauir S, Moor RM. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 1990;33:125–128.

    Article  Google Scholar 

  57. Anderson GB. Isolation and use of embryonic stem cells from livestock species. Anim Biotech 1992;3(l):165–172.

    Article  Google Scholar 

  58. First NL, Prather RS. Genomic potential in mammals. Differentiation 1991;48:1–8.

    Article  PubMed  CAS  Google Scholar 

  59. Notarianni E, Laurie S, Moor RM, Evans MJ. Maintenance and differentiation in culture of pluripotential embryonic cell lines from pig blastocysts. J Reprod Fertil 1990;41:51–56.

    CAS  Google Scholar 

  60. Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil 1991;43(suppl):255–260.

    CAS  Google Scholar 

  61. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.

    Article  PubMed  CAS  Google Scholar 

  62. Stewart CL. Prospects for the establishment of embryonic stem cells and genetic manipulation of domestic animals. In: Pedersen RA, McLaren A, First NL, eds. Animal applications of research and mammalian development. New York: Cold Spring Harbor Lab Press, 1991:267–283.

    Google Scholar 

  63. Doetschman T, Williams P, Maeda N. Establishment of hamster blastocyst-derived embryonic stem (ES) cells. Dev Biol 1988;127:224–227.

    Article  PubMed  CAS  Google Scholar 

  64. Collas P, Balise JJ, Robl JM. Influence of cell cycle stage of the donor nucleus on development of nuclear transplant rabbit embryos. Biol Reprod 1992;46:492–500.

    Article  PubMed  CAS  Google Scholar 

  65. Smith LC, Wilmut I, Hunter RHF. Influence of cell cycle stage at nuclear transplantation on the development in vitro of mouse embryos. J Reprod Fertil 1988;84:619–624.

    Article  PubMed  CAS  Google Scholar 

  66. Von Beroldington CH. The developmental potential of synchronized amphibian cell nuclei. Dev Biol 1981;81:115–126.

    Article  Google Scholar 

  67. McAvoy JW, Dixon KE, Marshall JA. Effects of differences in mitotic activity, stage of the cell cycle and degree of specialization of donor cells on nuclear transplantation in Xenopus laevis. Dev Biol 1975;45:330–339.

    Article  PubMed  CAS  Google Scholar 

  68. Ellinger MS. The cell cycle and transplantation of blastula nuclei in Bombiana orientalis. Dev Biol 1978;65:81–89.

    Article  PubMed  CAS  Google Scholar 

  69. Gurdon JB. The transplantation of living cell nuclei. Adv Morphol 1964;4:1.

    CAS  Google Scholar 

  70. DiBerardino MA, Hoffner NJ. Origin of chromosomal abnormalities in nuclear transplants—a reevaluation of nuclear differentiation and nuclear equivalence in amphibians. Dev Biol 1970;23:185–209.

    Article  CAS  Google Scholar 

  71. DiBerardino MA, King TJ. Development and cellular differentiation of neural nuclear-transplant embryos of known karyotype. Dev Biol 1965;15:102–128.

    Article  Google Scholar 

  72. Barnes FL, Westhusin ME, Looney CR. Embryo cloning: principles and progress. 4th World Cong on Genetics Applied to Livestock Production, Edinburgh, Scotland, 1990;16:323–333.

    Google Scholar 

  73. Bondioli KR. Commercial cloning of cattle by nuclear transfer. Proc Symp on Cloning Mammals by Nuclear Transplantation, Fort Collins, CO, January 15, 1992:35–38.

    Google Scholar 

  74. Schutz MM. Cytoplasmic and mitochondrial genetic effects on economic traits in dairy cattle [Dissertation]. Iowa State University, Ames, IA, 1991.

    Google Scholar 

  75. Freeman AE, Beitz DC. Cytoplasmic inheritance-molecular differences and phenotypic expression. Proc Symp on Cloning Mammals by Nuclear Transplantation, Fort Collins, CO, January 15, 1992:17–20.

    Google Scholar 

  76. Stice SL. Multiple generation bovine embryo cloning. Proc Symp on Cloning Mammals by Nuclear Transplantation, Fort Collins, CO, January 15, 1992: 28–31.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag New York, Inc

About this paper

Cite this paper

First, N.L., Leibfried-Rutledge, M.L. (1993). Nuclear Transfer in Mammals. In: Wolf, D.P., Stouffer, R.L., Brenner, R.M. (eds) In Vitro Fertilization and Embryo Transfer in Primates. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2716-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2716-8_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7640-1

  • Online ISBN: 978-1-4612-2716-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics