Skip to main content

Outer and Middle Ears

  • Chapter
Comparative Hearing: Mammals

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 4))

Abstract

The function of the mammalian external and middle ears (at least in terrestrial mammals) appears qualitatively similar. The external ear collects sound power and couples the collected power to the middle ear, and the middle ear transmits the power to the inner ear via motion of the tympanic membrane and ossicles. However, there are large differences in the scale and form of mammalian middle and external ears (Fig. 6.1), e.g., the African elephant (Loxodonta africana) has an external ear flap or pinna with an area of about 106 (mm)2 and a tympanic membrane area of almost 103 (mm)2, whereas the dwarf shrew (Suncus etruscus) has a pinna flap of only 10 (mm)2 and a tympanic membrane area of only 1 (mm)2 (Fleischer 1973; Heffner, Heffner, and Stichman 1982). There are also differences in the orientation and relative size of the ossicles (Fig. 6.1). In Loxodonta, the linear dimensions of the malleus are about twice those of the incus and the long arm of the malleus (the manubrium) is nearly vertical (perpendicular to the horizontal plane). In Suncus, the linear dimensions of the malleus are three to four times those of the incus and the manubrium of the malleus runs nearly parallel to the horizontal plane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM, Johnstone BM (1972) Middle ear function in a monotreme: The echidna (Tachyglossus aculeatus). J Exp Zool 180:245–250.

    PubMed  CAS  Google Scholar 

  • Allen J (1986) Measurements of eardrum acoustic impedance. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 44–51.

    Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. J Morphol 147:403–437.

    PubMed  CAS  Google Scholar 

  • Allin EF (1986) The auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N III, Maclean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Washington, DC: Smithsonian Institution Press, pp. 283–294.

    Google Scholar 

  • Allin EF, Hopson JA (1992) Evolution of the auditory system in synapsida (“mammal-like” reptiles and primitive mammals) as seen in the fossil record. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 587–614.

    Google Scholar 

  • Aritomo H, Goode RL (1988) Cochlear input impedance in fresh human temporal bones. Otolaryngol Head Neck Surg 97:136.

    Google Scholar 

  • Bast TH, Anson BJ (1949) The Temporal Bone and the Ear. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Békésy G von (1960) Experiments in Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Beranek LL (1949) Acoustic Measurements. New York: John Wiley and Sons.

    Google Scholar 

  • Beranek LL (1954) Acoustics. New York: McGraw-Hill.

    Google Scholar 

  • Blauert J (1983) Spatial Hearing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Borg E (1968) A quantitative study of the effect of the acoustic stapedius reflex on sound transmission through the middle ear of man. Acta Otolaryngol 66:461–472.

    PubMed  CAS  Google Scholar 

  • Borg E, Nilsson R (1984) Acoustic reflex in industrial noise. In: Silman S (ed) The Acoustic Reflex. New York: Academic Press, pp. 413–440.

    Google Scholar 

  • Borg E, Zakrisson JE (1974) Stapedius muscle and monaural masking. Acta Otolaryngol 94:385–393.

    Google Scholar 

  • Brill RL, Harder PJ (1991) The effects of attenuating returning echolocation signals at the lower jaw of a dolphin (Tursiops truncatus). J Acoust Soc Am 89:2851–2857.

    Google Scholar 

  • Buss IO, Estes JA (1971) The functional significance of movements and positions of the pinnae of African elephants Loxodonta africana. J Mammal 52:21–27.

    PubMed  CAS  Google Scholar 

  • Butler RA, Belendiuk K (1977) Spectral cues utilized in the localization of sound in the median sagittal plane. J Acoust Soc Am 61:1264–1269.

    PubMed  CAS  Google Scholar 

  • Buunen TJF, Vlaming MSMG (1981) Laser-Doppler velocity meter applied to tympanic membrane vibrations in cat. J Acoust Soc Am 69:744–750.

    PubMed  CAS  Google Scholar 

  • Calford MB, Pettigrew JD (1984) Frequency dependence of directional amplification at the cat’s pinna. Hear Res 14:13–19.

    PubMed  CAS  Google Scholar 

  • Cadile S (1990a) The auditory periphery of the ferret. I: Directional response properties and the pattern of interaural level differences. J Acoust Soc Am 88:2180–2195.

    Google Scholar 

  • Cadile S (1990b) The auditory periphery of the ferret. II: The spectral transformations of the external ear and their implications for sound localization. J Acoust Soc Am 88:2196–2204.

    Google Scholar 

  • Cadile S, Pettigrew AG (1987) Directional properties of the auditory periphery in the guinea pig. Hear Res 31:111–122.

    Google Scholar 

  • Carmel PW, Starr A (1963) Acoustic and nonacoustic factors modifying middle ear muscle activity in waking cats. J Neurophysiol 26:598–616.

    PubMed  CAS  Google Scholar 

  • Cockerell TDA, Miller LI, Printz M (1914) The auditory ossicles of American rodents. Bull Am Mus Nat Hist 33:347–364.

    Google Scholar 

  • Coles RG, Guppy A (1986) Biophysical aspects of directional hearing in the Tammar wallaby Macropus eugenii. J Exp Biol 121:371–394.

    Google Scholar 

  • Dahmann H (1929) Zur Physiologie des Hörens; experimentelle Untersuchungen über die Mechanik der Gehörknöchelchenkette sowie über deren Verhalten auf Ton und Luftdruck. Zeits f Hals-Nasen-Ohrenheilk 24:462–497.

    Google Scholar 

  • Dallos P (1970) Low frequency auditory characteristics: Species dependence. J Acoust Soc Am 48:489–499.

    PubMed  CAS  Google Scholar 

  • Dallos P (1973) The Auditory Periphery. New York: Academic Press.

    Google Scholar 

  • Dallos P (1981) Cochlear physiology. Ann Rev Psychol 32:153–190.

    CAS  Google Scholar 

  • Dancer A, Franke R (1980) Intracochlear sound pressure measurements in guinea pigs. Hear Res 2:191–205.

    PubMed  CAS  Google Scholar 

  • Dear SP (1987) Impedance and sound transmission in the auditory periphery of the chinchilla. PhD Thesis, University of Pennsylvania, Philadelphia.

    Google Scholar 

  • Décory L (1989) Origine des différences interspecifiques de susceptibilité an bruit. Thése de Doctorat de l’Université de Bordeaux, France.

    Google Scholar 

  • Decraemer WF, Khanna SM (1992) Three dimensional displacement of the umbo in cat. Abstracts of the Fifteenth Midwinter Meeting of the Association for Research in Otolaryngology 156.

    Google Scholar 

  • Decraemer WF, Khanna SM, Funnel WRJ (1989) Interferometric measurement of the amplitude and phase of tympanic membrane vibrations in cat. Hear Res 38:1–18.

    PubMed  CAS  Google Scholar 

  • Decraemer WF, Khanna SM, Funnell WRJ (1991) Malleus vibration mode changes with frequency. Hear Res 54:305–318.

    PubMed  CAS  Google Scholar 

  • Desoer CA, Kuh ES (1969) Basic Circuit Theory. New York: McGraw-Hill.

    Google Scholar 

  • DiMaio FHP, Tonndorf J (1978) The terminal zone of the external auditory meatus in a variety of mammals. Arch Otolaryngol 104:570–575.

    CAS  Google Scholar 

  • Donahue KM, Rosowski JJ, Peake WT (1991) Can the motion of the human malleus be described as pure rotation? Abstracts of the Fourteenth Midwinter Meeting of the Association for Research in Otolaryngology 52.

    Google Scholar 

  • Doran AHG (1879) Morphology of the mammalian ossicula auditus. Trans Linn Soc 1:371–497.

    Google Scholar 

  • Drescher DG, Eldredge DH (1974) Species differences in cochlear fatigue related to acoustics of outer and middle ears of guinea pig and chinchilla. J Acoust Soc Am 56:929–934.

    PubMed  CAS  Google Scholar 

  • Egolf DP (1980) Techniques for modeling the hearing aid receiver and associated tubing. In: Studebaker GA, Hochberg I (eds) Acoustical Factors Affecting Hearing Aid Performance. Baltimore, MD: University Park Press, pp. 297–319.

    Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysical Source Book. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fleischer G (1973) Studien am Skelett des Gehörorgans der Säugetiere einschliesslich des Menschen. Säugetierkundl Mitteilungen (München) 21:131–239.

    Google Scholar 

  • Fleischer G (1978) Evolutionary principles of the mammalian middle ear. Adv Anat Embryol Cell Biol 55:3–69.

    PubMed  CAS  Google Scholar 

  • Fletcher NH, Thwaites S (1979) Physical models for the analysis of acoustical systems in biology. Quart Rev Biophys 12:25–65.

    CAS  Google Scholar 

  • Fletcher NH, Thwaites S (1988) Obliquely truncated simple horns: Idealized models for vertebrate pinnae. Acoustica 65:194–204.

    Google Scholar 

  • Fraser FC, Purvis PE (1960) Anatomy and function of the cetacean ear. Proc R Soc Br 152:62–77.

    CAS  Google Scholar 

  • Funneil WR (1983) On the undamped natural frequencies and mode shapes of a finite-element model of the cat eardrum. J Acoust Soc Am 73:1657–1661.

    Google Scholar 

  • Funnell WR, Laszlo CA (1977) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467.

    Google Scholar 

  • Funnell WR, Laszlo CA (1982) A critical review of experimental observations on eardrum structure and function. ORL 44:181–205.

    PubMed  CAS  Google Scholar 

  • Funnell WR, Decraemer WF, Khanna SM (1987) On the damped frequency response of a finite-element model of the cat eardrum. J Acoust Soc Am 81:1851–1859.

    PubMed  CAS  Google Scholar 

  • Funnell WR, Decraemer WF, Khanna SM (1992) On the degree of rigidity of the manubrium in a finite-element model of the cat eardrum. J Acoust Soc Am 91: 2082–2090.

    PubMed  CAS  Google Scholar 

  • Gates GR, Saunders JC, Bock GR, Aitkin LM, Elliott MA (1974) Peripheral auditory function in the platypus Ornithorhynchus anatinus. J Acoust Soc Am 56:152–156.

    PubMed  CAS  Google Scholar 

  • Gaudin EP (1968) Hearing improvement by sound isolation of the round window. Arch Otolaryngol 87:376–377.

    PubMed  CAS  Google Scholar 

  • Goodhill V (1979) Ear: Diseases, Deafness and Dizziness. Hagerstown, MD: Harper & Row.

    Google Scholar 

  • Graham MD, Reams D, Perkins R (1978) Human tympanic membrane-malleus attachment. Ann Otol Rhinol Laryngol 87:426–431.

    PubMed  CAS  Google Scholar 

  • Gray AA (1913) Notes on the comparative anatomy of the middle ear. J Anat Physiol (London) 47:391–413.

    CAS  Google Scholar 

  • Guinan JJ Jr, Peake WT (1967) Middle ear characteristics of anesthetized cats. J Acoust Soc Am 41:1237–1261.

    PubMed  Google Scholar 

  • Gundersen T (1971) Prostheses in the Ossicular Chain. Baltimore, MD: University Park Press.

    Google Scholar 

  • Guppy A, Coles RB (1988) Acoustical and neural aspects of hearing in the Australian gleaning bats Macroderma gigas and Nyctophilus gonidi. J Comp Physiol A 162: 653–668.

    PubMed  CAS  Google Scholar 

  • Gyo K, Aritomo H, Goode RL (1987) Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol 103:87–95.

    PubMed  CAS  Google Scholar 

  • Heffner HE, Masterton RB (1980) Hearing in glires: Domestic rabbit, cotton rat, feral house mouse and kangaroo rat. J Acoust Soc Am 68:1584–1599.

    Google Scholar 

  • Heffner RS, Heffner HE (1990) Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res 46:239–252.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 691–716.

    Google Scholar 

  • Hefiner RS, Heffner HE, Stichman N (1982) Role of the elephant pinna in sound localization. Anim Behav 30:628–629.

    Google Scholar 

  • Helmholtz HL von (1868) Die Mechanik der Gehörknöchelchen und des Trommelfells. Pflüg Arch ges Physiol 1:1–60.

    Google Scholar 

  • Henson OW Jr (1961) Some morphological and functional aspects of certain structures of the middle ear in bats and insectivores. Univ Kansas Sci Bull 42:151–255.

    Google Scholar 

  • Henson OW Jr (1970) The ear and audition. In: Wimsatt WA (ed) The Biology of Bats, Volume 2. New York: Academic Press, pp. 181–262.

    Google Scholar 

  • Henson OW Jr (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) The Handbook of Sensory Physiology: The Auditory System V/l. New York: Springer-Verlag, pp. 39–110.

    Google Scholar 

  • Hill RW, Christian DP, Veghte JH (1980) Pinna temperature in exercising jackrabbits Lepus californicus. J Mammal 61:30–38.

    Google Scholar 

  • Hinchcliffe R, Pye A (1969) Variations in the middle ear of the Mammalia. J Zool (London) 157:277–288.

    Google Scholar 

  • Hudde H (1983) Measurement of the eardrum impedance of human ears. J Acoust Soc Am 73:242–247.

    PubMed  CAS  Google Scholar 

  • Hudde H, Schröter J (1980). The equalization of artificial heads without exact replication of eardrum impedance. Acoustica 44:301–307.

    Google Scholar 

  • Hunt RM Jr (1974) The auditory bulla in carnivora: An anatomical basis for reappraisal of carnivore evolution. J Morphol 43:21–76.

    Google Scholar 

  • Hunt RM Jr (1987) Evolution of Aeluroid carnivora: Significance of the auditory structures in the nimravid cat Dinictus. Am Mus Novit 2886:1–74.

    Google Scholar 

  • Hunt RM Jr, Korth WW (1980) The auditory region of Dermoptera: Morphology and function relative to other living mammals. J Morphol 164:167–211.

    Google Scholar 

  • Hüttenbrink KB (1988) The mechanics of the middle ear at static air pressures. Acta Otolaryngol Suppl 451:1–35.

    PubMed  Google Scholar 

  • Jen PH, Chen D (1988) Directionality of sound pressure transformation at the pinna of echolocating bats. Hear Res 34:101–118.

    PubMed  CAS  Google Scholar 

  • Johnstone BM, Taylor K (1971) Physiology of the middle ear transmission system. Otolaryngol Soc Aust 3:225–228.

    Google Scholar 

  • Keefe DH (1984) Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and non-isothermal boundary conditions. J Acoust Soc Am 75:58–62.

    Google Scholar 

  • Keen JA, Grobbelaar CS (1941) The comparative anatomy of the tympanic bulla and auditory ossicles with a note suggesting their function. Trans R Soc S Afr 28:307–329.

    Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from the human auditory system. J Acoust Soc Am 64:1386–1391.

    PubMed  CAS  Google Scholar 

  • Kermack KA, Musset F (1983) The ear in mammal-like reptiles and early mammals. Acta Palaeontol Polonica 28:148–158.

    Google Scholar 

  • Ketten DR (1984) Correlations of morphology with frequency for odontocete cochlea: Systematics and topology. PhD Thesis, The Johns Hopkins University, Baltimore, MD.

    Google Scholar 

  • Ketten DR (1992) The marine mammal ear: Specializations for aquatic audition and echolocation. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 717–754.

    Google Scholar 

  • Khanna SM, Stinson MR (1985) Specification of the acoustical input to the ear at high frequencies. J Acoust Soc Am 77:577–589.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1969) Middle ear power transfer. Archives Klin exp Ohren-Nasen Kehlkopfherkd Heilk 193:78–88.

    CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1972) Tympanic membrane vibrations in cats studied by time-average holography. J Acoust Soc Am 51:1904–1920.

    PubMed  CAS  Google Scholar 

  • Khanna SM, Tonndorf J (1978) Physical and physiological principles controlling auditory sensitivity in primates. In: Noback R (ed) Neurobiology of Primates. New York: Plenum Press, pp. 23–52.

    Google Scholar 

  • Killion MC, Dallos P (1979) Impedance matching by the combined effects of the outer and middle ear. J Acoust Soc Am 66:599–602.

    Google Scholar 

  • Kim DO (1980) Cochlear mechanics: Implications of electrophysiological and acoustical observations. Hear Res 2:297– 317.

    PubMed  CAS  Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of Acoustics. New York: John Wiley and Sons.

    Google Scholar 

  • Kirikae I (1960) The Structure and Function of the Middle Ear. Tokyo: University of Tokyo Press.

    Google Scholar 

  • Kobrak HG (1959) The Middle Ear. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Kohllöffel LUE (1984) Notes on the comparative mechanics of hearing. III. On Shrapnell’s membrane. Hear Res 13:83–88.

    PubMed  Google Scholar 

  • Kringlebotn M (1988) Network model for the human middle ear. Scand Audiol 17: 75–85.

    PubMed  CAS  Google Scholar 

  • Kringlebotn M, Gundersen T (1985) Frequency characteristics of the middle ear. J Acoust Soc Am 77:159–164.

    PubMed  CAS  Google Scholar 

  • Kuhn GF (1977) Model for the interaural time differences in the azimuthal plane. J Acoust Soc Am 62:157–167.

    Google Scholar 

  • Kuhn GF (1979) The pressure transformation from a diffuse sound field to the external ear and to the body and head surface. J Acoust Soc Am 65:991–1000.

    Google Scholar 

  • Kuhn GF (1987) Physical acoustics and measurements pertaining to directional hearing. In: Yost WA, Gourevitch G (eds) Directional Hearing. New York: Springer-Verlag, pp. 3–25.

    Google Scholar 

  • Lawrence BD, Simmons JA (1982) Echolocation in bats: The external ear and perception of the vertical positions of targets. Science 218:481–483.

    PubMed  CAS  Google Scholar 

  • Lay DM (1972) The anatomy, physiology, functional significance and evolution of specialized hearing organs of Gerbilline rodents. J Morphol 138:41–120.

    PubMed  CAS  Google Scholar 

  • Legouix JP, Wisner A (1955) Role fonctionnel des bulles tympaniques géantes de certains rongeurs (Meriones). Acoustica 5:208–216.

    Google Scholar 

  • Lidén G, Peterson JL, Björkman G (1970) Tympanometry. Arch Otolaryngol 92:248–257.

    PubMed  Google Scholar 

  • Lim DJ (1968) Tympanic membrane. Part II. Pars flaccida. Acta Otolaryngol 66:515–532.

    PubMed  CAS  Google Scholar 

  • Lin Q (1990) Speech production theory and articulatory speech synthesis. Technical Report of the Royal Institute of Technology, Stockholm. Regart 90–1, 186 pg.

    Google Scholar 

  • Lipatov NV, Sointseva GN (1974) Morpho-functional features of the biomechanics of the middle ear of dolphins. Bionics 8:113–117 (in Russian).

    Google Scholar 

  • Lynch TJ III (1981) Signal processing by the cat middle ear: Admittance and transmission, measurements and models. ScD Thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Lynch TJ III, Nedzelnitsky V, Peake WT (1982) Input impedance of the cochlea in cat. J Acoust Soc Am 72:108–130.

    PubMed  Google Scholar 

  • Lynch TJ III, Peake WT, Rosowski JJ (1994) Measurements of the acoustic input impedance of cat ears: 10 Hz to 22 kHz. J Acoust Soc Am (in press).

    Google Scholar 

  • Manley GA, Johnstone BM (1974) Middle ear function in the guinea pig. J Acoust Soc Am 56:571–576.

    PubMed  CAS  Google Scholar 

  • Manley GA, Irvine DR, Johnstone BM (1972) Frequency response of bat tympanic membrane. Nature 237:112–113.

    Google Scholar 

  • Margolis RH, Shanks JE (1985) Tympanometry. In: Katz J (ed.) Handbook of Clinical Audiology. Baltimore, MD: Williams & Wilkens, pp. 438–475.

    Google Scholar 

  • Marquet J, Van Camp KJ, Creten WL (1973) Topics in physics and middle-ear surgery. Acta Otorhinolaryngol Belgium 27:137.

    Google Scholar 

  • Masterton RB, Heffner HE, Ravizza R (1969) The evolution of human hearing. J Acoust Soc Am 45:966–985.

    PubMed  CAS  Google Scholar 

  • Matthews JW (1980) Mechanical modeling of nonlinear phenomena observed in the peripheral auditory system. ScD Thesis, Washington University, St. Louis, MO.

    Google Scholar 

  • Matthews JW (1983) Modeling reverse middle ear transmission of acoustic distortion signals. In: deBoer E, Viergever MA (eds) Mechanics of Hearing. Delft, The Netherlands: Delft University Press, pp. 11–18.

    Google Scholar 

  • McCormick JG, Wever EG, Palin J, Ridgway SH (1970) Sound conduction in the dolphin ear. J Acoust Soc Am 48:1418–1428.

    PubMed  Google Scholar 

  • McCormick JG, Wever EG, Ridgway SH, Palin J (1980) Sound reception in the porpoise as it relates to echolocation. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 449–467.

    Google Scholar 

  • McElveen JT, Goode RL, Miller C, Falk SA (1982) Effect of mastoid cavity modification on middle ear sound transmission. Ann Otol Rhinol Laryngol 91:526–532.

    PubMed  CAS  Google Scholar 

  • Merchant SN, Ravicz ME, Rosowski JJ (1992) The acoustic input impedance of the stapes and cochlea in human temporal bones. Abstracts of the Fifteenth Midwinter Meeting of the Association for Research in Otolaryngology 98.

    Google Scholar 

  • Metz O (1946) The acoustic impedance measured on normal and pathological ears. Acta Otolaryngol Suppl 63:1–254.

    Google Scholar 

  • Middlebrooks JC, Makous JC, Green DM (1989) Directional sensitivity of sound-pressure levels in the human ear canal. J Acoust Soc Am 86:89–108.

    PubMed  CAS  Google Scholar 

  • Møhl B (1968) Hearing in seals. In: Harrison RJ, Hubbard RC, Peterson RS, Rice CE, Schusterman RJ (eds) Behavior and Physiology of Pinnipeds. New York: Appleton-Century-Crofts, pp. 172–195.

    Google Scholar 

  • Møller AR (1961) Network model of the middle ear. J Acoust Soc Am 33:168–176.

    Google Scholar 

  • Møller AR (1965) Experimental study of the acoustic impedance of the middle ear and its transmission properties. Acta Otalaryngol 60:129–149.

    Google Scholar 

  • Møller AR (1974) The acoustic middle ear muscle reflex. In: Keidel WD, Neff WD (ed) Handbook of Sensory Physiology: Vol V/l: Auditory System. New York: Springer-Verlag, pp. 519–548.

    Google Scholar 

  • Molvaer O, Vallersnes FM, Kringlebotn M (1978) The size of the middle ear and the mastoid air cells. Acta Otolaryngol 85:24–32.

    PubMed  CAS  Google Scholar 

  • Moore PWB, Schusterman RJ (1987) Audiometric assessment of northern fur seals, Callorhinus ursinus. Mar Mammal Sci 3:31–53.

    Google Scholar 

  • Mundie R (1963) The impedance of the ear—A variable quantity. US Army Med Res Rep 576, pp. 63–85.

    Google Scholar 

  • Musicant AD, Chan JCK, Hind JE (1990) Direction-dependent spectral properties of cat external ear: New data and cross-species comparisons. J Acoust Soc Am 87: 757–781.

    PubMed  CAS  Google Scholar 

  • Nedzelnitsky V (1974) Measurements of sound pressure in the cochleae of anesthetized cats. In: Zwicker E, Terhardt E (eds) Facts and Models of Hearing. New York: Springer-Verlag, pp. 45–53.

    Google Scholar 

  • Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689.

    PubMed  CAS  Google Scholar 

  • Norris KS (1964) Some problems of echolocation in Cetacea. In: Tavolga WN (ed) Marine Bioacoustics. New York: Pergamon Press, pp. 317–336.

    Google Scholar 

  • Norris KS, Harvey GW (1974) Sound transmission in the porpoise head. J Acoust Soc Am 56:659–664.

    PubMed  CAS  Google Scholar 

  • Novacek MJ (1977) Aspects of the problem of variation, origin and evolution of the eutherian auditory bulla. Mammal Rev 7:131–150.

    Google Scholar 

  • Nuttall AL (1974) Measurement of the guinea pig middle ear transfer characteristic. J Acoust Soc Am 56:1231–1238.

    PubMed  CAS  Google Scholar 

  • Oelschläger HA (1986) Comparative morphology and evolution of the otic region in toothed whales, Cetacea, Mammalia. Am J Anat 177(3):353–368.

    PubMed  Google Scholar 

  • Oelschläger HA (1990) Evolutionary morphology and acoustics in the dolphin skull. In: Thomas J, Kastelein R (eds) Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 137–162.

    Google Scholar 

  • Onchi Y (1961) Mechanism of the middle ear. J Acoust Soc Am 33:794–805.

    Google Scholar 

  • Pang XD, Peake WT (1985) A model for changes in middle ear transmission by stapedius muscle contraction. J Acoust Soc Am 78:S13.

    Google Scholar 

  • Pang XD, Peake WT (1986) How do contractions of the stapedius muscle alter the acoustic properties of the middle ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (ed) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 36–43.

    Google Scholar 

  • Peake WT, Guinan JJ Jr (1967) Circuit model for the cat’s middle ear. MIT Quart Prog Rep 84:320–326.

    Google Scholar 

  • Peake WT, Rosowski JJ (1991) Impedance matching optimum velocity and ideal middle ears. Hear Res 53:1–6.

    PubMed  CAS  Google Scholar 

  • Peake WT, Rosowski JJ, Lynch TJ III (1992) Middle ear transmission: Acoustic vs. ossicular coupling in cat and human. Hear Res 57:245–268.

    PubMed  CAS  Google Scholar 

  • Peterson EA, Levison M, Lovett S, Feng A, Dunn SH (1974) The relation between middle ear morphology and peripheral auditory function in rodents. I. Sciuridae. J Aud Res 14:227–242.

    CAS  Google Scholar 

  • Phillips DP, Calford MB, Pettigrew JD, Aitkin LM, Semple MN (1982) Directionality of sound pressure transformation at the cat’s pinna. Hear Res 8:13–28.

    PubMed  CAS  Google Scholar 

  • Plassmann W, Webster DB (1992) Parallel evolution of low frequency sensitivity in Old World and New World desert rodents. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 637–654.

    Google Scholar 

  • Pocock RI (1921) The auditory bulla and other cranial characters in the Mustelidae. Proc Zool Soc London, pp. 473–486.

    Google Scholar 

  • Pocock RI (1928) The structure of the auditory bulla in the Procyonidae and the Ursidae with a note on the bulla of Hyaena. Proc Zool Soc London, pp. 963–974.

    Google Scholar 

  • Popov V, Supin S (1990) Localization of the acoustic window at the dolphin’s head. In: Thomas J, Kastelein R (eds) Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 417–426.

    Google Scholar 

  • Price GR (1974) Upper limit of stapes displacement: Implications for hearing loss. J Acoust Soc Am 56:195–197.

    PubMed  CAS  Google Scholar 

  • Price GR, Kalb JT (1991) Insight into hazard from intense impulses from a mathematical model of the ear. J Acoust Soc Am 90:219–227.

    PubMed  CAS  Google Scholar 

  • Puria S, Allen JB (1991) A parametric study of cochlear input impedance. J Acoust Soc Am 89:287–309.

    PubMed  CAS  Google Scholar 

  • Purves PE (1966) Anatomy and physiology of the outer and middle ear in cetaceans. In: Norris BK (ed) Whales, Dolphins and Porpoises. Berkeley: University of California Press, pp. 320–380.

    Google Scholar 

  • Pye A, Hinchcliffe R (1976) The comparative anatomy of the ear. In: Hinchcliffe R, Harrison D (eds) Scientific Foundations of Otolaryngology. London: William Heineman, pp. 184–202.

    Google Scholar 

  • Rabbitt RD, Holmes MH (1986) A fibrous dynamic continuum model of the tympanic membrane. J Acoust Soc Am 80:1716–1728.

    PubMed  CAS  Google Scholar 

  • Rabinowitz WM (1977) Acoustic reflex effects on the input admittance and transfer characteristics of the human middle ear. PhD Thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Rabinowitz WM (1981) Measurement of the acoustic input admittance of the human ear. J Acoust Soc Am 70:1025–1035.

    PubMed  CAS  Google Scholar 

  • Ramprashad F, Corey S, Ronald K (1972) Anatomy of the seal’s ear (Pagophilus groenlandicus). In: Harrison RJ (ed) Functional Anatomy of Marine Mammals. New York: Academic Press, pp. 263–306.

    Google Scholar 

  • Ravicz ME (1990) Acoustic impedance of the gerbil ear. MS Thesis, Boston University, Boston, MA.

    Google Scholar 

  • Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I. Middle ear input impedance. J Acoust Soc Am 92:157–177.

    PubMed  CAS  Google Scholar 

  • Rayleigh JWS (1945) The Theory of Sound, Volume II. New York: Dover Publications.

    Google Scholar 

  • Relkin EM, Saunders JC (1980) Displacement of the malleus in neonatal golden hamsters. Acta Otolaryngol 90:6–15.

    PubMed  CAS  Google Scholar 

  • Repenning CA (1972) Underwater hearing in seals: Functional morphology. In: Harrison RJ (ed) Functional Anatomy of Marine Mammals. New York: Academic Press, pp. 307–331.

    Google Scholar 

  • Reysenbach de Haan FW (1958). Hearing in whales. Acta Otolaryngol Suppl 134: 1–114.

    Google Scholar 

  • Rhode WS (1971) Observations of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer technique. J Acoust Soc Am 49:1218–1231.

    PubMed  Google Scholar 

  • Rhode WS (1978) Some observations on cochlear mechanics. J Acoust Soc Am 64: 158–176.

    PubMed  CAS  Google Scholar 

  • Robles L, Ruggero MA, Rich NC (1986) Basilar membrane mechanics at the base of the cochlea. I. Input-output functions, tuning curves and response phases. J Acoust Soc Am 80:1364–1374.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ (1991) The effects of external and middle ear filtering on auditory threshold and noise-induced hearing loss. J Acoust Soc Am 90:124–135.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: Predictions from the middle ear anatomy and hearing capabilities of extant mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 615–632.

    Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101:131–168.

    Google Scholar 

  • Rosowski JJ, Peake WT, Lynch TJ III (1984) Acoustic input admittance of the alligator lizard ear: Nonlinear features. Hear Res 16:205–223.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ, Carney LH, Lynch TJ III, Peake WT (1986) The effectiveness of the external and middle ears in coupling acoustic power into the cochlea. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 3–12.

    Google Scholar 

  • Rosowski JJ, Carney LH, Peake WT (1988) The radiation impedance of the external ear of cat: Measurements and applications. J Acoust Soc 84:695–1708.

    Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Shivapuja BG (1990) Middle ear response in the chinchilla and its relationship to mechanics at the base of the cochlea. J Acoust Soc Am 87:1612–1629.

    PubMed  CAS  Google Scholar 

  • Saunders JC, Garfinkle TJ (1983) Peripheral anatomy and physiology I. In: Willot JF (ed) Auditory Psychobiology of the Mouse. Springfield, IL: Charles C Thomas, pp. 131–168.

    Google Scholar 

  • Saunders JC, Summers RM (1982) Auditory structure and function in the mouse middle ear: An evaluation by SEM and capacitive probe. J Comp Physiol A 146: 517–525.

    Google Scholar 

  • Schröter J, Poesselt C (1986) The use of acoustical test fixtures for the measurement of hearing protector attenuation. Part II: Modeling the external ear, simulating bone conduction and comparing test fixture and real-ear data. J Acoust Soc Am 80:505–527.

    Google Scholar 

  • Schubert ED (1980) Hearing: Its Function and Dysfunction. New York: Springer-Verlag.

    Google Scholar 

  • Schuknecht HF (1974) Pathology of the Ear. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Searle CL, Braida LD, Cuddy DR, Davis MF (1975) Binaural pinna disparity: Another localization cue. J Acoust Soc Am 57:448–455.

    PubMed  CAS  Google Scholar 

  • Segali W (1943) The auditory region of the arctoid carnivores. Zool Ser Field Mus Nat Hist 29:33–59.

    Google Scholar 

  • Segall W (1969) The auditory ossicles (malleus and incus) and their relationships to the tympanic: In marsupials. Acta Anat 73:176–191.

    PubMed  CAS  Google Scholar 

  • Segali W (1973) Characteristics of the ear, especially the middle ear, in fossorial mammals compared with those in the Manidae. Acta Anat 86:96–110.

    Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72:131–141.

    PubMed  CAS  Google Scholar 

  • Shaw EAG (1974a) The external ear. In: Keidel WD, Neff WD (ed) Handbook of Sensory Physiology: Vol V/l: Auditory System. New York: Springer-Verlag, pp. 455–490.

    Google Scholar 

  • Shaw EAG (1974b) Transformation of sound pressure level from the free field to the eardrum in the horizontal plane. J Acoust Soc Am 56:1848–1860.

    PubMed  CAS  Google Scholar 

  • Shaw EAG (1976) Diffuse field sensitivity of the external ear based on the reciprocity principle. J Acoust Soc Am 60:S102.

    Google Scholar 

  • Shaw EAG (1979) Performance of the external ear as a sound collector. J Acoust Soc Am 65:S9.

    Google Scholar 

  • Shaw EAG (1982) External ear response and sound localization. In: R Gatehouse (ed) Localization of Sound: Theory and Application. Groton, CT: Amphora Press, pp. 30–41.

    Google Scholar 

  • Shaw EAG (1988) Diffuse field response, receiver impedance and the acoustical reciprocity principle. J Acoust Soc Am 84:2284–2287.

    Google Scholar 

  • Shaw EAG, Stinson MR (1983) The human external and middle ear: Models and concepts. In: de Boer E, Viergever MA (eds) Mechanics of Hearing. Delft, The Netherlands: Delft University Press, pp. 3–10.

    Google Scholar 

  • Shera C, Zwieg G (1991) Phenomenological characterization of eardrum transduction. J Acoust Soc Am 90:253–262.

    PubMed  CAS  Google Scholar 

  • Shrapnell HJ (1832) On the form and structure of the membrana tympani. London Med Gazette 10:120–124.

    Google Scholar 

  • Siebert WM (1970) Simple model of the impedance matching properties of the external ear. Quarterly Progress Report of the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge pp. 236–242.

    Google Scholar 

  • Siebert WM (1973) Hearing and the ear. In: Brown JHU (ed) Engineering Principles in Physiology, Volume 1. New York: Academic Press, pp. 139–184.

    Google Scholar 

  • Silman S (1984) The Acoustic Reflex: Basic Principles and Clinical Applications. New York: Academic Press.

    Google Scholar 

  • Sinyor A, Laszlo CA (1973) Acoustic behavior of the outer ear of the guinea pig and the influence of the middle ear. J Acoust Soc Am 54:916–921.

    PubMed  CAS  Google Scholar 

  • Sointseva GN (1973) Morphofunctional features of the outer ear of terrestrial, semi-aquatic and aquatic mammals. Reports of the 8th All Union Acoustic Conference, pp. 25–28 (in Russian).

    Google Scholar 

  • Sointseva GN (1990) Formation of an adaptive structure of the peripheral part of the auditor (sic) analyzer in aquatic echo-locating mammals during ontogenesis. In: Thomas J, Kastelein R (eds) Sensory Abilities of Cetaceans. New York: Plenum Press, pp. 363–383.

    Google Scholar 

  • Stephens CB (1972) Development of the middle and inner ear in the golden hamster (Mesocricetus auratus). Acta Otolaryngol Suppl 296:1–51.

    PubMed  CAS  Google Scholar 

  • Stinson MR (1985) The spatial distribution of sound pressure within scaled replicas of the human ear. J Acoust Soc Am 78:1596–1602.

    PubMed  CAS  Google Scholar 

  • Stinson MR (1986) Spatial distribution of sound pressure in the ear canal. In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A (eds) Peripheral Auditory Mechanisms. New York: Springer-Verlag, pp. 13–20.

    Google Scholar 

  • Stinson MR, Khanna SM (1989) Specification of the geometry of the human ear canal for the prediction of sound pressure level distribution. J Acoust Soc Am 85:2492–2503.

    PubMed  CAS  Google Scholar 

  • Teas DC, Nielsen DW (1975) Interaural attenuation versus frequency for guinea pig and chinchilla CM response. J Acoust Soc Am 58:1066–1072.

    PubMed  CAS  Google Scholar 

  • Teranishi R, Shaw EAG (1968) External ear acoustic models with simple geometry. J Acoust Soc Am 44:257–263.

    PubMed  CAS  Google Scholar 

  • Tonndorf J (1972) Bone conduction. In: Tobias JV (ed) Foundations of Auditory Theory, Volume II. New York: Academic Press, pp. 197–237.

    Google Scholar 

  • Tonndorf J, Khanna SM (1967) Some properties of sound transmission in the middle and outer ears of cats. J Acoust Soc Am 41:513–521.

    PubMed  CAS  Google Scholar 

  • Tonndorf J, Khanna SM (1972) Tympanic membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233.

    PubMed  CAS  Google Scholar 

  • Tonndorf J, Pastici H (1986) Middle ear sound transmission: A field of early interest to Merle Lawrence. Am J Otolaryngol 7:121–129.

    Google Scholar 

  • Tonndorf J, Tabor JR (1962) Closure of the cochlear windows. Ann Otol Rhinol Laryngol 71:5–29.

    PubMed  CAS  Google Scholar 

  • Tröger J (1930) Die Schallaufnahme durch die äussere Ohr. Phys Zeits 31:26–47.

    Google Scholar 

  • Unge M von, Bagger-Sjöbäck D, Borg E (1991) Mechanoacoustic properties of the tympanic membrane: A study on isolated Mongolian gerbil temporal bones. Am J Otolaryngol 12:407–419.

    Google Scholar 

  • van der Klaauw CJ (1931) The auditory bulla in some fossil mammals: With a general introduction to this region of the skull. Bull Am Mus Nat Hist 62:1–352.

    Google Scholar 

  • von Bismark G (1967) The sound pressure transformation function from free field to the eardrum of chinchilla. MS Thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • von Bismark G, Pfeiffer RR (1967) On the sound pressure transformation from free field to eardrum of chinchilla. J Acoust Soc Am 42:S156.

    Google Scholar 

  • Vrettakos PA, Dear SP, Saunders JC (1988) Middle ear structure in the chinchilla: A quantitative study. Am J Otolaryngol 9:58–67.

    PubMed  CAS  Google Scholar 

  • Wada H, Kobayashi T (1990) Dynamical behavior of the middle ear: Theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. J Acoust Soc Am 87:237–245.

    PubMed  CAS  Google Scholar 

  • Waetzmann E von, Keibs L (1936) Theoretischer und experimenteller Vergleich von Hörschwellenmessungen. Akustische Zeitschrift 1:1–12.

    Google Scholar 

  • Webster DB (1965) Ears of Dipodomys. Nat Hist 74:26–33.

    Google Scholar 

  • Webster DB (1982) A function of the enlarged middle ear cavities of the kangaroo rat Dipodomys. Physiol Zool 35:248–255.

    Google Scholar 

  • Webster DB, Webster M (1975) Auditory systems of Heteromyidae: Functional morphology and evolution of the middle ear. J Morphol 146:343–376.

    PubMed  CAS  Google Scholar 

  • Werner CF (1960) Das Gehörorgan der Wirlbeltiere und des Menschen. Leipzig, Germany: VG Thieme.

    Google Scholar 

  • Wever EG, Lawrence M (1954) Physiological Acoustics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wiener FM, Ross DA (1946) The pressure distribution in the auditory canal in a progressive sound field. J Acoust Soc Am 18:401–408.

    Google Scholar 

  • Wiener FM, Pfeiffer RR, Backus ASN (1966) On the sound pressure transformation by the head and auditory meatus of the cat. Acta Otolaryngol 61:255–269.

    PubMed  CAS  Google Scholar 

  • Wilson JP, Bruns V (1983) Middle ear mechanics in the CF-bat Rhinolophus ferrumequinum. Hear Res 10:1–13.

    PubMed  CAS  Google Scholar 

  • Wilson JP, Johnstone JR (1975) Basilar membrane and middle ear vibration in guinea pig measured by capacitive probe. J Acoust Soc Am 57:705–723.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1984) The development of auditory function in the cochlea of the Mongolian gerbil. Hear Res 13:277–283.

    PubMed  CAS  Google Scholar 

  • Woolf NK, Ryan AF (1988) Contributions of the middle ear to the development of function in the cochlea. Hear Res 35:131–142.

    PubMed  CAS  Google Scholar 

  • Wullstein H (1956) The restoration of the function of the middle ear in chronic otitis media. Ann Otol Rhinol Laryngol 65:1020–1041.

    Google Scholar 

  • Zuercher JC, Carlson EV, Killion MC (1988) Small acoustic tubes: New approximations including isothermal and viscous effects. J Acoust Soc Am 83:1653–1660.

    Google Scholar 

  • Zwillenberg D, Konkle DF, Saunders JC (1981) Measures of middle ear admittance during experimentally induced changes in middle ear volume in the hamster. Otolaryngol Head Neck Surg 89:856–860.

    PubMed  CAS  Google Scholar 

  • Zwislocki J (1962) Analysis of the middle ear function. Part I. Input impedance. J Acoust Soc Am 34:1514–1523.

    Google Scholar 

  • Zwislocki J (1963) Analysis of the middle ear function. Part II. Guinea pig ear. J Acoust Soc Am 35:1034–1040.

    Google Scholar 

  • Zwislocki J (1965) Analysis of some auditory characteristics. In: Luce RD, Bush RR, Galanter E (eds) Handbook of Mathematical Psychology. New York: John Wiley and Sons, pp. 1–97.

    Google Scholar 

  • Zwislocki J (1975) The role of the external and middle ear in sound transmission. In: Tower DB (ed) The Nervous System, Volume 3: Human Communication and Its Disorders. New York: Raven Press, pp. 45–55.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rosowski, J.J. (1994). Outer and Middle Ears. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Mammals. Springer Handbook of Auditory Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2700-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2700-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7633-3

  • Online ISBN: 978-1-4612-2700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics