Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 4))

Abstract

While there are now large bodies of research in both human psychoacoustics (reviewed in Vol 3 of this series) and nonhuman mammalian auditory physiology and anatomy (reviewed in Vols 1 and 2), the understanding of mammalian hearing has been handicapped by a failure to integrate these two areas of research. Many human psychoacoustic papers attempt to account for, and model, human psychophysical performance based on some convenient selection of nonhuman mammalian anatomical and physiological measures of hearing, without determining whether the animals perceive sounds in the same way as the human subjects. Although the mammalian auditory system has several components in common across species, there can be extreme differences when the auditory system is modified due to an animal’s specialized use of sound (see Echteler, Chapter 5). For example, the cochlea of the greater horseshoe bat (Rhinolophus ferrumequinum) departs significantly from that of other species (reviewed in Pollak and Casseday 1989), and estimates of frequency resolution (Long 1977, 1980a,b) and frequency discrimination (Heilmann-Rudolf 1984) from this species reflect these differences. These specializations are related to the use of sound for echolocation. Humans also use sounds in a very sophisticated way in speech perception, and it is probable that the human auditory system is also specialized (especially in the frequency region associated with speech).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Au WWL, Moore PWB (1990) Critical ratio and critical bandwidth for the Atlantic bottlenose dolphin. J Acoust Soc Am 88:1635–1638.

    PubMed  CAS  Google Scholar 

  • Ayrapet’yants ESH, Konstantinov AI (1974) Echolocation in nature. An English translation of the National Technical Information Service, Springfield, VA, JPRS 63328–1 and -2.

    Google Scholar 

  • Bargones JY, Marean DC, Werner LA (1992) Infant psychometric functions: Asymptotic performance. J Acoust Soc Am 91:2436 (Abstract).

    Google Scholar 

  • Baru AV (1971) Behavioral thresholds and frequency difference limen as a function of sound duration in dogs deprived of the auditory cortex. In: Gersuni GV (ed) Sensory Processes at the Neuronal and Behavioral Levels. New York: Academic Press, pp. 757–763.

    Google Scholar 

  • Bos CE, de Boer E (1966) Masking and discrimination. J Acoust Soc Am 39:708–715.

    Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis: The Perceptual Organization of Sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brown AM, Gaskill SA (1990a) Measurement of acoustic distortion reveals underlying similarities between human and rodent mechanical responses. J Acoust Soc Am 88:840–849.

    PubMed  CAS  Google Scholar 

  • Brown AM, Gaskill SA (1990b) Can basilar membrane tuning be inferred from distortion measurement? In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) Lecture Notes in Biomathematics: The Mechanics and Biophysics of Hearing. Berlin: Springer-Verlag, pp. 164–169.

    Google Scholar 

  • Brown AM, Gaskill SA, Williams DM (1992) Mechanical filtering of sound in the inner ear. Proc Soc Condon, Series Br 250:29–34

    CAS  Google Scholar 

  • Brown CH, Waser PM (1984) Hearing and communication in blue monkeys (Cercopithecus mitis). Anim Behav 32:66–75.

    Google Scholar 

  • Brownell WE (1990) Outer hair cell electromotility and otoacoustic emissions. Ear Hear 11:82–92.

    PubMed  CAS  Google Scholar 

  • Burdick CK (1979) The effect of behavioral paradigm on auditory discrimination learning: A literature review. J Aud Res 19 (Suppl 8): 59–82.

    PubMed  CAS  Google Scholar 

  • Burns EM, Viemeister NF (1981) Played again SAM: Further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Google Scholar 

  • Clark TD, Bohne BA (1986) Cochlear damage: Auditory correlates? In: Collins MJ, Glattke TJ, Harker LA (eds) Sensorineural Hearing Loss: Mechanisms, Diagnosis, and Treatment. Iowa City: University of Iowa Press, pp. 59–82.

    Google Scholar 

  • Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: Correlation with histopathology and suppression by external tones. Hear Res 16:299–314.

    PubMed  CAS  Google Scholar 

  • Dallos P (1988) Cochlear neurobiology: Revolutionary development. American Speech-Language-Hearing Association 30:50–56.

    CAS  Google Scholar 

  • Davey G (1989) Ecological Learning Theory. New York: Routledge.

    Google Scholar 

  • Delgutte B (1990a) Two-tone rate suppression in auditory nerve fibers: Dependence on suppressor frequency and level. Hear Res 49:225–246.

    PubMed  CAS  Google Scholar 

  • Delgutte B (1990b) Physiological mechanisms of psychophysical masking observations from auditory nerve fibers. J Acoust Soc Am 87:791–809.

    PubMed  CAS  Google Scholar 

  • Dooling RJ. (1989) Perception of Complex, species-specific vocalizations by bird and humans. In: Dooling RJ, Hulse SH (eds) The Comparative Psychology of Audition: Perceiving Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc., pp. 423–444.

    Google Scholar 

  • Eddins DA, Hall JW III, Grose JH (1992) The detection of temporal gaps as a function of frequency region and absolute noise bandwidth. J Acoust Soc Am 91:1069–1077.

    PubMed  CAS  Google Scholar 

  • Ehret G (1974) Age-dependent hearing loss in normal hearing mice. Naturwissenschaften 11:506.

    Google Scholar 

  • Ehret G (1975) Frequency and intensity difference limens and nonlinearities in the ear of the house mouse (Mus musculus). J Comp Physiol 102:321–336.

    Google Scholar 

  • Ehret G (1976a) Critical bands and filter characteristics of the ear of the house mouse (Mus musculus). Biol Cybernet 24:35–42.

    CAS  Google Scholar 

  • Ehret G (1976b) Temporal auditory summation for pure tones and white noise in the house mouse (Mus musculus). J Acoust Soc Am 59:1421–1427.

    PubMed  CAS  Google Scholar 

  • Ehret G (1989) Hearing in the mouse. In: Dooling RJ, Hulse SH (eds) The Comparative Psychology of Audition: Perceiving Complex Sounds. Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 3–32.

    Google Scholar 

  • Elliot DN, Stein L, Harrison MJ (1960) Determination of absolute-intensity thresholds and frequency-difference thresholds in cats. J Acoust Soc Am 32:380–384.

    Google Scholar 

  • Evans EF, Pratt SR, Spenner H, Cooper NP (1992) Comparisons of physiological and behavioral properties: Auditory frequency selectivity. In: Cazals Y, Horner K, Demany L (eds) Auditory Physiology and Perception. New York: Pergamon Press, pp. 159–169.

    Google Scholar 

  • Fasti H (1978) Frequency discrimination for pulsed versus modulated tones. J Acoust Soc Am 63:275–277.

    Google Scholar 

  • Fay RR (1974) Masking of tones by noise for the goldfish (Carassius auratus). J Comp Physiol Psychol 87:708–816.

    PubMed  CAS  Google Scholar 

  • Fay RR (1988) Hearing in Vertebrates: A Psychophysics Databook. Winnetka, IL: Hill-Fay Associates.

    Google Scholar 

  • Fay RR (1992) Structure and function in sound discrimination among vertebrates. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 229–263.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Google Scholar 

  • Forrest TG, Green DM (1987) Detection of partially filled gaps in noise and the temporal modulation transfer function. J Acoust Soc Am 82:1933–1943.

    PubMed  CAS  Google Scholar 

  • Furst M, Lapid M (1988) A cochlear model for acoustic emissions. J Acoust Soc Am 84:215–221.

    PubMed  CAS  Google Scholar 

  • Gerken GM, Bhat VKH, Hutchison-Clutter M (1990) Auditory temporal integration and the power function model. J Acoust Soc Am 88:767–778.

    PubMed  CAS  Google Scholar 

  • Glasberg BR, Moore BCJ, Patterson RD, Nimmo-Smith I (1984) Dynamic range and asymmetry of the auditory filter. J Acoust Soc Am 76:419–427.

    PubMed  CAS  Google Scholar 

  • Gould E (1983) Mechanisms of mammalian auditory communication. In: Eisenberg JF, Kleiman DG (eds) Advances in the Study of Mammalian Behavior. The American Society of Mammalogists, Spec. Publ. # 7, pp. 265–342.

    Google Scholar 

  • Graf CJ, Saunders SS, Salvi RJ (1992) Detection of intensity decrements by the chinchilla. J Acoust Soc Am 91:1062–1068.

    PubMed  CAS  Google Scholar 

  • Green DM (1988) Profile Analysis: Auditory Intensity Discrimination. New York: Oxford University Press.

    Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1991) Critical bandwidth and consonance: Their operational definition in relation to cochlear nonlinearity and combination tones. Hear Res 54: 209–246.

    PubMed  CAS  Google Scholar 

  • Greenwood DD (1992) Erratum and comments re: Critical bandwidth and consonance: Their operational definitions in relation to cochlear nonlinearity and combination tones (Hear Res 54:209–246, 1991). Hear Res 59P:121–128.

    Google Scholar 

  • Griffin DR (1971) The importance of atmospheric attenuation for the echolocation of bats (Chiroptera). Anim Behav 19:55–61.

    PubMed  CAS  Google Scholar 

  • Hall JW III, Grose JH (1990) Comodulation masking release and auditory grouping. J Acoust Soc Am 88:119–125.

    PubMed  Google Scholar 

  • Halpern DL, Dallos P (1986) Auditory filter shapes in the chinchilla. J Acoust Soc Am 80:765–775.

    PubMed  CAS  Google Scholar 

  • Harrison JM (1992) Avoiding conflicts between the natural behavior of the animal and the demands of discrimination experiments. J Acoust Soc Am 92:1331–1345.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1982) Hearing in the elephant (Elephas maximus): Absolute sensitivity, frequency discrimination, and sound localization. J Comp Psychol 96: 926–944.

    CAS  Google Scholar 

  • Heffner RS, Heffner HE (1990) Vestigial hearing in a fossorial mammal, the pocket gopher (Geomys bursarius). Hear Res 46:239–252.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1991) Behavioral hearing range of the chinchilla. Hear Res 52:13–16.

    PubMed  CAS  Google Scholar 

  • Heffner RS, Heffner HE (1992) Evolution of sound localization in mammals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 691–715.

    Google Scholar 

  • Heilmann-Rudolf U (1984) Das Frequenzunterscheidungsvermoegen bei der Grossen Hufeisennase. Dissertation der Eberhard-Karls-Universitat Tubingen, Germany.

    Google Scholar 

  • Henderson D, Salvi RJ, Pavek G, Hamernik RP (1984) Amplitude modulation thresholds in chinchillas with high-frequency hearing loss. J Acoust Soc Am 75:1177–1183.

    PubMed  CAS  Google Scholar 

  • Hoffman HF, Ison JR (1992) Reflex modification and analysis of sensory processing in developmental and comparative research. In: Campbell BA, Hayne H, Richardson R (eds) Attention and Information Processing in Infants and Adults: Perspectives from Human and Animal Research. Hillsdale, NJ, Lawrence Erlbaum Associates, pp. 83–111.

    Google Scholar 

  • Houtgast T (1977) Auditory-filter characteristics derived from direct-masking and pulsation-threshold data with a rippled-noise masker. J Acoust Soc Am 62:409–415.

    PubMed  CAS  Google Scholar 

  • Javel E, Mott JB (1988) Physiological and psychophysical correlates of temporal processes in hearing. Hear Res 34:275–294.

    PubMed  CAS  Google Scholar 

  • Jesteadt W, Sims SL (1975) Decision processes in frequency discrimination. J Acoust Soc Am 57:1161–1168.

    PubMed  CAS  Google Scholar 

  • Johnson CS (1968a) Relation between absolute threshold and duration-of-tone pulses in the botttlenosed porpoise. J Acoust Soc Am 43:757–763.

    PubMed  CAS  Google Scholar 

  • Johnson CS (1968b) Masked tonal thresholds in the bottlenosed porpoise. J Acoust Soc Am 44:965–967.

    PubMed  CAS  Google Scholar 

  • Ketten DR (1992) The marine mammal ear: Specializations for aquatic audition and echolocation. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 717–750.

    Google Scholar 

  • Kidd G Jr, Mason CR, Uchanski RM, Brantley MA (1991) Evaluation of simple models of auditory profile analysis using random reference spectra. J Acoust Soc Am 90:1340–1354.

    PubMed  Google Scholar 

  • Killion MC (1978) Revised estimate of minimum audible pressure: Where is the “missing 6 dB”? J Acoust Soc Am 63:1501–1508.

    PubMed  CAS  Google Scholar 

  • Kojima S (1990) Comparison of auditory functions in the chimpanzee and human. Folia Primatol 55:62–72.

    PubMed  CAS  Google Scholar 

  • Kössl M (1992) High frequency distortion products from the ears of two bat species, Megaderma lyra and Carolila perspicillata. Hear Res 60:156–164.

    PubMed  Google Scholar 

  • Kraus N, McGee T (1992) Electrophysiology of the human auditory system. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 335–403.

    Google Scholar 

  • Long GR (1977) Masked auditory thresholds from the bat (Rhinolophus ferrumequinum). J Comp Physiol 116:247–255.

    Google Scholar 

  • Long GR (1980a) Further studies of masking in the greater horseshoe bat (Rhinolophus ferrumequinum). In: Busnel RG, Fish JF (eds) Animal Sonar Systems. New York: Plenum Press, pp. 929–932.

    Google Scholar 

  • Long GR (1980b) Some psychophysical measurements of frequency processing in the greater horseshoe bat. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 132–135.

    Google Scholar 

  • Long GR (1983) Psychoacoustical measures of frequency processing in mammals. In: Fay RR, Gourevitch G (eds) Hearing and Other Senses: Papers in Honor of E. G. Wever. Groton, CT: Amphora Press, pp. 230–246.

    Google Scholar 

  • Long GR (1984) The microstructure of quiet and masked thresholds. Hear Res 15:73–87.

    PubMed  CAS  Google Scholar 

  • Long GR, Clark WW (1984) Detection of frequency and rate modulation by the chinchilla. J Acoust Soc Am 75:1184–1190.

    PubMed  CAS  Google Scholar 

  • Long GR, Cullen JK Jr (1985) Intensity limens at high frequencies. J Acoust Soc Am 78:507–513.

    PubMed  CAS  Google Scholar 

  • Long GR, Miller JD (1981) Tone-on-tone masking in the chinchilla. Hear Res 4:279–285.

    PubMed  CAS  Google Scholar 

  • Long GR, Schnitzler HU (1975) Behavioral audiograms from the bat (Rhinolophus ferrumequinum). J Comp Physiol 100:211–219.

    Google Scholar 

  • Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using van der Pol oscillators: Effects of aspirin administration. J Acoust Soc Am 89:1201–1212.

    PubMed  CAS  Google Scholar 

  • Mackintosh NJ (1974) The Psychology of Animal Learning. New York: Academic Press.

    Google Scholar 

  • MacMillan NA, Creelman CD (1991) Detection Theory: A User’s Guide. Cambridge: Cambridge University Press.

    Google Scholar 

  • McGee T, Ryan A, Dallos P (1976) Psychophysical tuning curves of chinchillas. J Acoust Soc Am 60:1146–1150.

    PubMed  CAS  Google Scholar 

  • Martin GK, Stagner BB, Coats AC, Lonsbury-Martin BL (1988) Endolymphatic hydrops in rabbits: Behavioral thresholds, acoustic distortion products, and cochlear pathology. In: Nadol JB Jr (ed) Second International Symposium on Meniere’s Disease: Pathogenesis, Pathophysiology, Diagnosis and Treatment. Boston, MA: Harvard University Press, pp. 205–219.

    Google Scholar 

  • Michelsen A (1992) Hearing and sound communication in small animals: Evolutionary adaptations to the laws of physics. In: Webster DB, Fay RR, Popper AN (eds), The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 61–77.

    Google Scholar 

  • Møller AR (1977) Frequency selectivity of single auditory nerve fibers in response to broadband noise stimuli. J Acoust Soc Am 62:135–142.

    PubMed  Google Scholar 

  • Moody DB (1970) Reaction time as an index of sensory function. In: Stebbins WC (ed) Animal Psychophysics: The Design and Conduct of Sensory Experiments. New York: Appleton-Century-Crofts, pp. 277–301.

    Google Scholar 

  • Moore BCJ (1986) Frequency Selectivity in Hearing. London: Academic Press.

    Google Scholar 

  • Moore BCJ (1989) An Introduction to the Psychology of Hearing. San Diego, CA: Academic Press.

    Google Scholar 

  • Moore BCJ, O’Loughlin BJ (1986) The use of nonsimultaneous masking to measure frequency selectivity and suppression. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 179–250.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Schooneveldt GP (1990) Across-channel masking and comodulation masking release. J Acoust Soc Am 87:1683–1694.

    PubMed  CAS  Google Scholar 

  • Moore BCJ, Glasberg BR, Simpson A (1992) Evaluation of a method of simulating reduced frequency selectivity. J Acoust Soc Am 91:3402–3423.

    PubMed  CAS  Google Scholar 

  • Moran G (1975) Severe food deprivation: Some thoughts regarding its exclusive use. Psychol Bull 82:543–557.

    PubMed  CAS  Google Scholar 

  • Mott JB, McDonald LP, Sinex DG (1990) Neural correlates of psychophysical release from masking. J Acoust Soc Am 88:2682–2691.

    PubMed  CAS  Google Scholar 

  • Nelson DA, Kiester TE (1978) Frequency discrimination in the chinchilla. J Acoust Soc Am 64:114–126.

    PubMed  CAS  Google Scholar 

  • Nelson DA, Chargo SJ, Kopun JG, Freyman RL (1990) Effects of stimulus level on forward-masked psychophysical tuning curves in quiet and in noise. J Acoust Soc Am 88:2143–2151.

    PubMed  CAS  Google Scholar 

  • Niemiec AJ, Yost WA, Shofner WP (1992) Behavioral measures of frequency selectivity in the chinchilla. J Acoust Soc Am 92:2636–2649.

    PubMed  CAS  Google Scholar 

  • Ohyama K, Wada H, Kobayashi T, Takasaka T (1991) Spontaneous otoacoustic emissions in the guinea pig. Hear Res 56:111–121.

    PubMed  CAS  Google Scholar 

  • O’Loughlin BJ, Moore BCJ (1981) Off-frequency listening: Effects on psychoacoustical tuning curves obtained in simultaneous and forward masking. J Acoust Soc Am 69:1119–1125.

    PubMed  Google Scholar 

  • Patterson RD (1976) Auditory filter shapes derived with noise stimuli. J Acoust Soc Am 59:640–654.

    PubMed  CAS  Google Scholar 

  • Patterson RD, Moore BCJ (1986) Auditory filters and excitation patterns as representations of frequency resolution. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 123–177.

    Google Scholar 

  • Patuzzi R, Robertson D (1988) Tuning in the mammalian cochlea. Physiol Rev 68: 1009–1082.

    PubMed  CAS  Google Scholar 

  • Payne KB, Langbauer WR Jr, Thomas EM (1986) Infrasonic calls of the Asian elephant (Elephas maximus). Behav Ecol Sociobiol 18:297–301.

    Google Scholar 

  • Pfingst BE (1988) Comparison of psychophysical and neurophysiological studies of cochlear implants. Hear Res 34: 243–252.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, Rai DT (1990) Effects of level on nonspectral frequency difference limens for electrical and acoustic stimuli. Hear Res 50:43–56.

    PubMed  CAS  Google Scholar 

  • Pfingst BE, Rush NL (1987) Discrimination of simultaneous frequency and level changes in electrical stimuli. Ann Otol Rhinol Laryngol 96(Suppl 128):34–37.

    Google Scholar 

  • Pickles JO (1975) Normal critical bands in the cat. Acta Otolaryngol 80:245–254.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1979) Psychophysical frequency resolution in the cat as determined by simultaneous masking and its relation to auditory nerve resolution. J Acoust Soc Am 66:1725–1732.

    PubMed  CAS  Google Scholar 

  • Pickles JO (1980) Psychophysical frequency resolution in the cat studied with forward masking. In: van den Brink G, Bilsen FA (eds) Psychophysical, Physiological and Behavioural Studies in Hearing. Delft, The Netherlands: Delft University Press, pp. 118–126.

    Google Scholar 

  • Pickles JO (1986) The neurophysiological basis of frequency selectivity. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 51–121.

    Google Scholar 

  • Pickles JO (1988) An Introduction to the Physiology of Hearing. San Diego, CA: Academic Press.

    Google Scholar 

  • Plack CJ, Moore BCJ (1990) Temporal window shape as a function of frequency and level. J Acoust Soc Am 87:2178–2187.

    PubMed  CAS  Google Scholar 

  • Plack CJ, Moore BCJ (1991) Decrement detection in normal and impaired ears. J Acoust Soc Am 90:3069–3076.

    PubMed  CAS  Google Scholar 

  • Pollak GD, Casseday JH (1989) The Neural Basis of Echolocation in Bats. Berlin: Springer-Verlag.

    Google Scholar 

  • Poole JH, Payne KB, Langbauer WR Jr, Moss CJ (1988) The social contexts of some very low frequency calls of African elephants. Behav Ecol Sociobiol 22:385–392.

    Google Scholar 

  • Probst R, Longsbury-Martin BL, Martin GK (1991) A review of otoacoustic emissions. J Acoust Soc Am 89:2027–2067.

    PubMed  CAS  Google Scholar 

  • Prosen CA, Moody DB (1991) Low-frequency detection and discrimination following apical hair cell destruction. Hear Res 57:142–152.

    PubMed  CAS  Google Scholar 

  • Prosen CA, Halpern DL, Dallos P (1989) Frequency difference limens in normal and sensorineural hearing impaired chinchillas. J Acoust Soc Am 85:1302–1313.

    PubMed  CAS  Google Scholar 

  • Prosen CA, Moody DB, Sommers MS, Stebbins WC (1990a) Frequency discrimination in the monkey. J Acoust Soc Am 88:2152–2158.

    PubMed  CAS  Google Scholar 

  • Prosen CA, Moody DB, Stebbins WC, Smith DW, Sommers MS, Brown JN, Altschuler RA, Hawkins JE Jr (1990b) Apical hair cells and hearing. Hear Res 44:179–194.

    PubMed  CAS  Google Scholar 

  • Rado R, Himelfarb M, Arensburg B, Terkel J, Wollberg Z (1989) Are seismic communication signals transmitted by bone conduction in the blind mole rat? Hear Res 41:23–30.

    PubMed  CAS  Google Scholar 

  • Ravicz ME, Rosowski JJ, Voigt HF (1992) Sound-power collection by the auditory periphery of the Mongolian gerbil Meriones unguiculatus. I. Middle ear input impedance. J Acoust Soc Am 92:157–177.

    PubMed  CAS  Google Scholar 

  • Relkin EM (1988) Introduction to the analysis of middle ear function. In: Jahn AF, Santos-Sacchi J (eds) Physiology of the Ear. New York: Raven Press, pp. 103–123.

    Google Scholar 

  • Rice JJ, May BJ, Spirou GA, Young ED (1992) Pinna-based spectral cues for sound localization in cat. Hear Res 58:132–152.

    PubMed  CAS  Google Scholar 

  • Rosowski JJ (1992) Hearing in transitional mammals: Predictions from the middle ear anatomy and hearing capabilities of extant animals. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 615–631.

    Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Ryan A (1976) Hearing sensitivity of the mongolian gerbil, Meriones unguiculatus. J Acoust Soc Am 59:1222–1226.

    PubMed  CAS  Google Scholar 

  • Ryan A, Dallos P, McGee T (1979) Psychophysical tuning curves and auditory thresholds after hair cell damage in the chinchilla. J Acoust Soc Am 66:370–378.

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Arehole S (1985) Gap detection in chinchillas with temporary high-frequency hearing loss. J Acoust Soc Am 77:1173–1177.

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Perry JW, Hamernik RP (1982) Relationships between cochlear pathologies and auditory nerve and behavioral responses following acoustic trauma. In: Hamernik RP, Henderson D, Salvi RJ (eds) New Perspectives on Noise-Induced Hearing Loss. New York: Raven Press, pp. 165–188.

    Google Scholar 

  • Salvi RJ, Ahroon WA, Perry JW, Gunnarson AD, Henderson D (1982a) Comparison of psychophysical and evoked-potential tuning curves in the chinchilla. Am J Otolaryngol 3:408–416.

    PubMed  CAS  Google Scholar 

  • Salvi RJ, Giraudi DM, Henderson D, Hamernik RP (1982b) Detection of sinusoidal amplitude-modulated noise by the chinchilla. J Acoust Soc Am 71:424–429.

    PubMed  CAS  Google Scholar 

  • Saunders SS, Shivapuja BG, Salvi RJ (1987) Auditory intensity discrimination in the chinchilla. J Acoust Soc Am 82:1604–1607.

    PubMed  CAS  Google Scholar 

  • Scharf B (1970) Critical bands. In: Tobias JV (ed) Foundations of Modern Auditory Theory, Volume 1. New York: Academic Press, pp. 159–202.

    Google Scholar 

  • Seaton WH, Trahiotis C (1975) Comparison of critical ratios and critical bands in the monaural chinchilla. J Acoust Soc Am 57:193–199.

    PubMed  CAS  Google Scholar 

  • Shailer MJ, Moore BCJ (1985) Detection of temporal gaps in bandlimited noise: Effects of variations in bandwidth and signal-to-masker ratio. J Acoust Soc Am 77:635–639.

    PubMed  CAS  Google Scholar 

  • Sinex DG, Havey DC (1984) Correlates of tone-on-tone masked thresholds in the chinchilla auditory nerve. Hear Res 13:285–292.

    PubMed  CAS  Google Scholar 

  • Sinex DG, Havey DC (1986) Neural mechanisms of tone-on-tone masking: Patterns of discharge rate and discharge synchrony related to rates of spontaneous discharge in chinchilla auditory nerve. J Neurophysiol 56:1763–1780.

    PubMed  CAS  Google Scholar 

  • Sinnott JM, Petersen M, Hopp S (1985) Frequency and intensity discrimination in humans and monkeys. J Acoust Soc Am 78:1977–1985.

    PubMed  CAS  Google Scholar 

  • Sinnott JM, Brown CH, Brown FE (1992) Frequency and intensity discrimination in Mongolian gerbils, African monkeys and humans. Hear Res 59:205–212.

    PubMed  CAS  Google Scholar 

  • Sivian LJ, White SD (1933) On minimum audible sound fields. J Acoust Soc Am 4:288–321.

    Google Scholar 

  • Smith DW, Moody DB, Stebbins WC (1990) Auditory frequency selectivity. In: Berkeley MA, Stebbins WC (eds) Comparative Perception, Volume 1. New York: John Wiley and Sons, pp. 67–95.

    Google Scholar 

  • Solecki JM, Gerken GM (1990) Auditory temporal integration in the normal hearing and hearing-impaired cat. J Acoust Soc Am 88:779–785.

    PubMed  CAS  Google Scholar 

  • Stebbins WC (1973) Hearing of Old World monkeys (Cercopithecinae). Am J of Phys Anthropol 38:357–364.

    CAS  Google Scholar 

  • Stebbins WC (1990) Perception in animal behavior. In: Berkeley MA, Stebbins WC (eds) Comparative Perception, Volume 1. New York: John Wiley and Sons, pp. 1–26.

    Google Scholar 

  • Stinson MR, Lawton BW (1989) Specification of the geometry of the human ear canal for the prediction of sound-pressure level distribution. J Acoust Soc Am 85:2492–2503.

    PubMed  CAS  Google Scholar 

  • Thompson RK, Herman LM (1975) Underwater frequency discrimination in the bottlenose dolphin (1–140 kHz) and the human (1–8 kHz). J Acoust Soc Am 57:943–948.

    PubMed  CAS  Google Scholar 

  • Turner C, Zwislocki J, Filion P (1989) Intensity discrimination determined with two paradigms in normal and hearing-impaired subjects. J Acoust Soc Am 86:109–115.

    PubMed  CAS  Google Scholar 

  • Tyler RS (1986) Frequency resolution in hearing-impaired listeners. In: Moore BCJ (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 309–371.

    Google Scholar 

  • Vater M (1988) Cochlear physiology and anatomy in bats. In: Nachtigall PE, Moore PWB (eds) Animal Sonar, Processes and Performance. New York: Plenum Press, pp. 225–243.

    Google Scholar 

  • Viemeister NF (1979) Temporal modulation transfer functions based on modulation thresholds. J Acoust Soc Am 66:1364–1380.

    PubMed  CAS  Google Scholar 

  • Viemeister NF (1988a) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 213–241.

    Google Scholar 

  • Viemeister NF (1988b) Intensity coding and the dynamic range problem. Hear Res 34. 267–274.

    PubMed  CAS  Google Scholar 

  • Viemeister NF, Bacon SP (1988) Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones. J Acoust Soc Am 84:172–178.

    PubMed  CAS  Google Scholar 

  • Viemeister NF, Schlauch RS (1992) Issues in infant psychoacoustics. In: Werner LA, Rubel EW (eds) Developmental Psychoacoustics. Washington, DC: American Psychological Association, 191–209.

    Google Scholar 

  • Viemeister NF, Wakefield GH (1991) Temporal integration and multiple looks. J Acoust Soc Am 90:858–865.

    PubMed  CAS  Google Scholar 

  • Watson CS (1963) Masking of tones by noise for the cat. J Acoust Soc Am 35:167–172.

    Google Scholar 

  • Watson CS, Gengel RW (1969) Signal duration and signal frequency in relation to auditory sensitivity. J Acoust Soc Am 46:989–997.

    PubMed  CAS  Google Scholar 

  • Webster DB, Plassman W (1992) Parallel evolution of low-frequency sensitivity in Old World and New World desert rodents. In: Webster DB, Fay RR, Popper AN (eds) The Evolutionary Biology of Hearing. New York: Springer-Verlag, pp. 633–636.

    Google Scholar 

  • Wier CC, Jesteadt W, Green DM (1976) Frequency discrimination as a function of frequency and sensation level. J Acoust Soc Am 61:178–184.

    Google Scholar 

  • Wightman F, Allen P (1992) Individual differences in auditory capability among preschool children. In: Werner LA, Rubel EW (eds) Developmental Psychoacoustics. Washington, DC: American Psychological Association, 113–133.

    Google Scholar 

  • Wiley RH, Richards DG (1978) Physical constraints on acoustic communication in the atmosphere: Implications for the evolution of animal vocalizations. Behav Ecol Sociobiol 3:69–94.

    Google Scholar 

  • Winter IM, Palmer AR (1991) Intensity coding in low-frequency auditory nerve fibers of the guinea pig. J Acoust Soc Am 90:1958–1967.

    PubMed  CAS  Google Scholar 

  • Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523.

    PubMed  CAS  Google Scholar 

  • Zwicker E (1954) Die Verdeckung von Schmalbandgerauschen durch Sinustone. Acoustica 4:415–420.

    Google Scholar 

  • Zwicker E, Fasti H (1990) Psychoacoustics: Facts and Models. Berlin, Heidelberg: Springer-Verlag.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Long, G.R. (1994). Psychoacoustics. In: Fay, R.R., Popper, A.N. (eds) Comparative Hearing: Mammals. Springer Handbook of Auditory Research, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2700-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2700-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7633-3

  • Online ISBN: 978-1-4612-2700-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics