Skip to main content

[Ca2+]i and Contraction of Arterial Smooth Muscle

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 111 Accesses

Abstract

Most contractile stimuli induce arterial smooth muscle contraction by increasing myoplasmic [Ca2+] ([Ca2+]i). Ca2+ binds to calmodulin and activates myosin light chain kinase.1 The activated myosin light chain kinase phosphorylates the 20kDa light chain of myosin at serine 19 and activates the myosin’s ATPase.2 The phosphorylated myosin binds to actin filaments, cycles, and produces shortening and/or force.3 This is the most widely accepted mechanism for the regulation of smooth muscle contraction. In this chapter, I will discuss in detail the mechanisms regulating [Ca2+]i and the dependence of contractile force of myosin light chain phosphorylation. I will also briefly discuss the mechanisms altering the dependence of myosin phosphorylation on [Ca2+]i (ie, the [Ca2+]i sensitivity of phosphorylation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Means AR, VanBerkum MFA, Bagchi I, Lu KP, Rasmussen CD. Regulatory functions of calmodulin. Pharmacol Ther 1991; 50:255–270.

    Article  PubMed  CAS  Google Scholar 

  2. Ikebe M, Koretz J, Hartshorne DJ. Effects of phosphorylation of light chain residues threonine 18 and serine 19 on the properties and conformation of smooth muscle myosin. J Biol Chem 1988; 263:6432–6437.

    PubMed  CAS  Google Scholar 

  3. Hai C-M, Murphy RA. Ca2+, crossbridge phosphorylation, and contraction. Annu Rev Physiol 1989; 51:285–298.

    Article  PubMed  CAS  Google Scholar 

  4. Somlyo AV, Somlyo AP. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther 1968; 159:129–145.

    PubMed  CAS  Google Scholar 

  5. Hermsmeyer K, Sturek M, Rusch NJ. Calcium channel modulation by dihydropyridines in vascular smooth muscle. Ann NY Acad Sei 1988; 522:25–31.

    Article  CAS  Google Scholar 

  6. Rembold CM. Desensitization of swine arterial smooth muscle to transplasmalemmal Ca2+ influx. J Physiol (Lond) 1989; 416:273–290.

    CAS  Google Scholar 

  7. Rembold CM. Relaxation, [Ca2+]i5 and the latch-bridge hypothesis in swine arterial smooth muscle. Am J Physiol 1991; 261(Cell Physiol):C41–C50.

    PubMed  CAS  Google Scholar 

  8. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259(Cell Physiol):C3-C18.

    PubMed  CAS  Google Scholar 

  9. Thornbury KD, Ward SM, Dalziel HH, Carl A, Westfall DP, Sanders KM. Nitric oxide and nitrosocysteine mimic nonadrenergic, noncholinergic hyperpolarization in canine proximal colon. Am J Physiol 1991; 261(Gastrointest Liver Physiol):G553–G557.

    PubMed  CAS  Google Scholar 

  10. Gaul G, Gierschik P, Marme D. Pertussis toxin inhibits angiotensin II-mediated phosphatidyl-inositol breakdown and ADP-ribosylates A 40 KD protein in cultured smooth muscle cells. Biochem Biophys Res Commun 1988; 150(2):841–847.

    Article  PubMed  CAS  Google Scholar 

  11. Litosch I, Fain JN. Minireview: Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sei 1986; 39:187–194.

    Article  CAS  Google Scholar 

  12. Zeng YY, Benishin CG, Pang PKT. Guanine nucleotide binding proteins may modulate gating of calcium channels in vascular smooth muscle. I. Studies with fluoride. J Pharmacol Exp Ther 1989; 250:343–351.

    PubMed  CAS  Google Scholar 

  13. Berridge MJ. Inositol trisphosphate and diacylglcerol: Two interacting second messengers. Annu Rev Biochem 1987; 56:159–193.

    Article  PubMed  CAS  Google Scholar 

  14. Somlyo AV, Bond M, Somlyo AP, Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sei USA 1985; 82:5231–5235.

    Article  CAS  Google Scholar 

  15. Suematsu E, Hirata M, Hashimoto T, Kuriyama H. Inositol 1,4,5-trisphosphate releases Ca2+ from intracellular store sites of skinned single cells of porcine coronary artery. Biochem Biophys Res Commun 1984; 120:481–485.

    Article  PubMed  CAS  Google Scholar 

  16. Walker JW, Somlyo AV, Goldman YE, Somlyo AP, Trentham DR. Kinetics of smooth and skeletal muscle activation by laser pulse photolysis of caged inositol 1,4,5-trisphosphate. Nature 1987; 327:249–252.

    Article  PubMed  CAS  Google Scholar 

  17. Baron CB, Pring M, Coburn RF. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle. Am J Physiol 1989; 256:C375–C383.

    PubMed  CAS  Google Scholar 

  18. Abdel-Latif AA. Calcium-mobilizing receptors, polyphosphoinositides, generation of second messengers and contraction in the mammalian iris smooth muscle: Historical perspectives and current status. Life Sei 1989; 45:757–786.

    Article  CAS  Google Scholar 

  19. Kobayashi S, Somlyo AV, Somlyo AP. Heparin inhibits the inositol 1,4,5-trisphosphate-dependent, but not the independent, calcium release induced by guanine nucleotide in vascular smooth muscle. Biochem Biophys Res Commun 1988; 153:625–631.

    Article  PubMed  CAS  Google Scholar 

  20. Worley PF, Baraban JM, Supattapone S, Wilson VS, Snyder SH. Characterization of inositol triphosphate receptor in brain. Regulation by pH and calcium. J Biol Chem 1987; 262:12132–12136.

    PubMed  CAS  Google Scholar 

  21. Griendling KK, Rittenhouse SE, Brock TA, Ekstein LS, Gimbrone MA Jr, Alexander RW. Sustained diacylglycerol formation from inosital phospholipids in angiotensin Il-stimulated vascular smooth muscle cells. J Biol Chem 1986; 261(13):5901–5906.

    PubMed  CAS  Google Scholar 

  22. Howe PH, Akhtar RA, Naderi S, Abdel-Latif AA. Correlative studies on the effect of carbachol on myo-inositol triphosphate accumulation, myosin light chain phosphorylation and contraction in sphincter smooth muscle of rabbit iris. J Pharmacol Exp Ther 1986; 239:574–583.

    PubMed  CAS  Google Scholar 

  23. Long CJ, Stone IW. Adenosine reduces agonist-induced production of inositol phosphates in rat aorta. J Pharm Pharmacol 1987; 39:1010–1014.

    Article  PubMed  CAS  Google Scholar 

  24. Takuwa Y, Takuwa N, Rasmussen H. Carbachol induces a rapid and sustained hydrolysis of polyphosphoinositide in bovine tracheal smooth muscle measurements of the mass of polyphosphoinositides, 1,4-diacylglycerol, and phosphatide acid. J Biol Chem 1986; 261(31): 14670–14675.

    PubMed  CAS  Google Scholar 

  25. Miller-Hance WC, Miller JR, Wells JN, Stull JT, Kamm KE. Biochemical events associated with activation of smooth muscle contraction. J Biol Chem 1988; 263:13979–13982.

    PubMed  CAS  Google Scholar 

  26. Salmon DMW, Bolton TB. Early events in inositol phosphate metabolism in longitudinal smooth muscle from guinea-pig intestine stimulated with carbachol. Biochem J 1988; 254:553–557.

    PubMed  CAS  Google Scholar 

  27. Chilvers ER, Challiss RAJ, Barnes PJ, Nahorski SR. Mass changes of inositol(l,4,5)trisphosphate in trachealis muscle following agonist stimulation. Eur J Pharmacol 1989; 164:587–590.

    Article  PubMed  CAS  Google Scholar 

  28. Chuch SH, Mullaney JM, Ghosh TK, Zachary AL, Gill DL. GTP and inositol 1,4,5-trisphosphate-activated intracellular calcium movements in neuronal and smooth muscle cell lines. J Biol Chem 1987; 262(No. 28):13857–13864.

    Google Scholar 

  29. Kobayashi S, Somlyo AP, Somlyo AV. Guanine nucleotide- and inositol 1,4,5-trisphosphate-induced calcium release in rabbit main pulmonary artery. J Physiol 1988; 403:601–619.

    PubMed  CAS  Google Scholar 

  30. Gill DL, Ghosh TK, Mullaney JM. Calcium signalling mechanisms in endoplasmic reticulum activated by inositol 1,4,5-trisphosphate and GTP. Cell Calcium 1989; 10:363–374.

    Article  PubMed  CAS  Google Scholar 

  31. Burgoyne RD, Cheek TR, Morgan A, et al. Distribution of two distinct Ca2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature 1989; 342:72–74.

    Article  PubMed  CAS  Google Scholar 

  32. Deth R, Van Breemen C. Agonist induced release of intracellular Ca2+ in the rabbit aorta. J Membr Biol 1977; 30:363–380.

    PubMed  CAS  Google Scholar 

  33. Casteels R, Droogmans G. Exchange characteristics of the noradrenaline sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J Physiol (Lond) 1981; 317:263–279.

    CAS  Google Scholar 

  34. Ratz P, Murphy RA. Contributions of intracellular and extracellular Ca2+ pools to activation of myosin phosphorylation and stress in swine carotid media. Circ Res 1987; 60:410–421.

    PubMed  CAS  Google Scholar 

  35. Bozler E. Role of calcium in initiation of activity of smooth muscle. Am J Physiol 1969; 216:671–673.

    PubMed  CAS  Google Scholar 

  36. Van Breemen C, Lukeman S, Leijten P, Yamamoto H, Loutzenhiser R. The role of superficial SR in modulating force development induced by Ca entry into arterial smooth muscle. J Cardiovasc Pharmacol 1986; 8:S111–S116.

    Article  PubMed  Google Scholar 

  37. Forder J, Scriabine A, Rasmussen H. Plasma membrane calcium flux, protein kinase C activation and smooth muscle contraction. J Pharmacol Exp Ther 1985; 235:267–273.

    PubMed  CAS  Google Scholar 

  38. Rembold CM, Murphy RA. Myoplasmic [Ca2+] determines myosin phosphorylation in agonist-stimulated swine arterial smooth muscle. Circ Res 1988; 63:593–603.

    PubMed  CAS  Google Scholar 

  39. Gunst SJ, Bandyopadhyay S. Contractile force and intracellular Ca2+ during relaxation of canine tracheal smooth muscle. Am J Physiol 1989; 257:C355–C364.

    PubMed  CAS  Google Scholar 

  40. Himpens B, Somlyo AP. Free calcium and force transients during depolarization and pharmacomechanical coupling in guinea-pig smooth muscle. J Physiol 1988; 395:507–530.

    PubMed  CAS  Google Scholar 

  41. Himpens B, Matthijs G, Somlyo AV, Butler TM, Somlyo AP. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol 1988; 92:713–729.

    Article  PubMed  CAS  Google Scholar 

  42. Morgan JP, Morgan KG. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol (Lond) 1984; 351:155–167.

    CAS  Google Scholar 

  43. Rasmussen H, Takuwa Y, Park S. Protein kinase C in the regulation of smooth muscle contraction. FASEB J 1987; 1:177–185.

    PubMed  CAS  Google Scholar 

  44. Bolton TB. Mechanism of action of transmitters and other substances on smooth muscle. Physiol Rev 1979; 59:606–718.

    PubMed  CAS  Google Scholar 

  45. Benham CD, Tsien RW. A novel receptor-operated Ca2+-permiable channel activated by ATP in smooth muscle. Nature 1987; 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  46. Ganitkevich V, Isenberg G. Isolated guinea pig coronary smooth muscle cells: Acetylcholine induces hyperpolarization due to sarcoplasmic reticulum calcium release activating potassium channels. Circ Res 1990; 67:525–528.

    PubMed  CAS  Google Scholar 

  47. Blayney LM, Newby AC. Histamine and a guanine nucleotide increase calcium permeability in pig aortic microsomal fractions. Biochem J 1990; 267:105–109.

    PubMed  CAS  Google Scholar 

  48. Byrne NG, Large WA. Membrane ionic mechanisms activated by noradrenaline in cells isolated from rabbit portal vein. J Physiol (Lond) 1988; 404:557–573.

    CAS  Google Scholar 

  49. Nelson MT, Standen NB, Bray den JE, Worley JF III. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 1988; 336:382–385.

    Article  PubMed  CAS  Google Scholar 

  50. Ohya Y, Sperelakis N. Involvement of a GTP-binding protein in stimulating action of angiotensin II on calcium channels in vascular smooth muscle cells. Circ Res 1991; 68:763–771.

    PubMed  CAS  Google Scholar 

  51. Kimura M, Kimura I, Kobayashi S. Relationship between cyclic AMP-dependent protein kinase activation and calcium uptake increase of sarcoplasmic reticulum fraction of hog biliary muscles relaxed by cholecystokinin-C-terminal peptides. Biochem Pharmacol 1982; 31(19):3077–3083.

    Article  PubMed  CAS  Google Scholar 

  52. Furakawa K, Tawada Y, Shigekawa M. Regulation of the plasma membrane Ca2+ pump by cyclic nucleotides in cultured vascular smooth muscle cells. J Biol Chem 1988; 263:8058–8065.

    Google Scholar 

  53. Francis SH, Noble« BD, Todd BW, Wells JN, Corbin JD. Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 1988; 34:506–517.

    PubMed  CAS  Google Scholar 

  54. Blaustein MP. Sodium/calcium exchange and the control of contractility in cardiac muscle and vascular smooth muscle. J Cardio vase Pharmacol 1988; 12(suppl 5):S56–S68.

    CAS  Google Scholar 

  55. Aaronson PI, Benham CD. Alterations in [Ca2+]i mediated by sodium-calcium exchange in smooth muscle cells isolated from the guinea-pig ureter. J Physiol (Lond) 1989; 416:1–18.

    CAS  Google Scholar 

  56. Rembold CM, Murphy RA. Myoplasmic [Ca2+] determines myosin phosphorylation and isometric stress in agonist-stimulated swine arterial smooth muscle. J Cardio vase Pharmacol 1988; 12(suppl 5):S38–S42.

    CAS  Google Scholar 

  57. Stull JT, Hsu L-C, Tansey MG, Kamm KE. Myosin light chain kinase phosphorylation in tracheal smooth muscle. J Biol Chem 1990; 265:16683–16690.

    PubMed  CAS  Google Scholar 

  58. Gilbert EK, Weaver BA, Rembold CM. Depolarization decreases the [Ca2+]i-sensitivity of myosin light chain kinase in arterial smooth muscle: A comparison of aequorin and Fura-2 [Ca2+] estimates. FASEB J 1991; 5:2593–2599.

    PubMed  CAS  Google Scholar 

  59. Kitazawa T, Masuo M, Somlyo AP. G protein-mediated inhibition of myosin light-chain phosphatase in vascular smooth muscle. Proc Natl Acad Sei USA 1991; 88:9307–9310.

    Article  CAS  Google Scholar 

  60. Filo RS, Bohr DF, Ruegg JC. Glycerinated skeletal and smooth muscle: Calcium and magnesium dependence. Science 1965; 147:1581–1583.

    Article  PubMed  CAS  Google Scholar 

  61. Tanner JA, Haeberle JR, Meiss RA. Regulation of glycerinated smooth muscle contraction and relaxation by myosin phosphorylation. Am J Physiol 1988; 255:C34–C42.

    PubMed  CAS  Google Scholar 

  62. Rembold CM, Murphy RA. Myoplasmic calcium, myosin phosphorylation, and regulation of the crossbridge cycle in swine arterial smooth muscle. Circ Res 1986; 58:803–815.

    PubMed  CAS  Google Scholar 

  63. Rembold CM, Murphy RA. Histamine conentration and Ca2+ mobilization in arterial smooth muscle. Am J Physiol 1989; 257(Cell Physiol 26):C122–C128.

    PubMed  CAS  Google Scholar 

  64. Itoh T, Ikebe M, Kargacin GJ, Hartshorne DJ, Kemp BE, Fay FS. Effects of modulators of myosin light-chain kinase activity in single smooth muscle cells. Nature 1989; 338:164–167.

    Article  PubMed  CAS  Google Scholar 

  65. de Lanerolle P, Strauss JD, Felsen R, Doerman GE, Paul RJ. Effects of antibodies to myosin light chain kinase on contractility and myosin phosphorylation in chemically permeabilized smooth muscle. Circ Res 1991; 68:457–465.

    PubMed  Google Scholar 

  66. Driska SP, Aksoy MO, Murphy RA. Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am J Physiol 1981; 240:C222–C233.

    PubMed  CAS  Google Scholar 

  67. Dillon PF, Aksoy MO, Driska SP, Murphy RA. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science 1981; 211:495–497.

    Article  PubMed  CAS  Google Scholar 

  68. Aksoy MO, Mras S, Kamm KE, Murphy RA. Ca2+, cAMP, and changes in myosin phosphorylation during contraction of smooth muscle. Am J Physiol 1983; 245:C255–C270.

    PubMed  CAS  Google Scholar 

  69. Krisanda JM, Paul RJ. Phosphagen and metabolite content during contraction in porcine carotid artery. Am J Physiol 1983; 244:385–390.

    Google Scholar 

  70. Ratz PH, Hai C-M, Murphy RA. Dependence of stress on cross-bridge phosphorylation in vascular smooth muscle. Am J Physiol 1989; 256:C96–C100.

    PubMed  CAS  Google Scholar 

  71. de Lanerolle P, Stull JT. Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle. J Biol Chem 1980; 255:9993–10000.

    PubMed  Google Scholar 

  72. Haeberle JR, Hott JW, Hathaway DR. Regulation of isometric force and isotonic shortening velocity by phosphorylation of the 20,000 dalton myosin light chain of rat uterine smooth muscle. Pfluegers Arch 1985; 403:215–219.

    Article  CAS  Google Scholar 

  73. Bäräny K, Ledvora RF, Mougios, V, Bäräny M. Stretch-induced myosin light chain chosphorylation and stretch-release-induced tension development in arterial smooth muscle. J Biol Chem 1985; 260:7126–7130.

    PubMed  Google Scholar 

  74. Silver PJ, Stull JT. Phosphorylation of myosin light chain and Phosphorylase in tracheal smooth muscle in response to KCl and carbachol. Mol Pharmacol 1984; 25:267–274.

    PubMed  CAS  Google Scholar 

  75. Silver PJ, Stull JT. Regulation of myosin light chain and Phosphorylase phosphorylation in tracheal smooth muscle. J Biol Chem 1982; 257:6145–6150.

    PubMed  CAS  Google Scholar 

  76. Hai C-M, Murphy RA. Cross-bridge dephosphorylation and relaxation of vascular smooth muscle. Am J Physiol 1989; 256:C282–C287.

    PubMed  CAS  Google Scholar 

  77. Hoar PE, Kerrick WG. Mn2+ activates skinned smooth muscle cells in the absence of myosin light chain phosphorylation. Pfluegers Arch 1988; 412:225–230.

    Article  CAS  Google Scholar 

  78. Gerthoffer WT. Dissociation of myosin phosphorylation and active tension during muscarinic stimulation of tracheal smooth muscle. J Pharmacol Exp Ther 1987; 240:8–15.

    PubMed  CAS  Google Scholar 

  79. Singer HA. Protein kinase C activation and myosin light chain phosphorylation in 32P-labeled arterial smooth muscle. Am J Physiol 1990; 259(Cell Physiol):C631–C639.

    PubMed  CAS  Google Scholar 

  80. Rasmussen H, Haller H, Takuwa Y, Kelley G, Park S. Messenger Ca2+, protein kinase C, and smooth muscle contraction. Prog Clin Biol Res 1990; 327:89–106.

    PubMed  CAS  Google Scholar 

  81. Tansey MG, Hori M, Karaki H, Kamm KE, Stull JT. Okadaic acid uncouples myosin light chain phosphorylation and tension in smooth muscle. FEBS Lett 1990; 270:219–221.

    Article  PubMed  CAS  Google Scholar 

  82. McDaniel NL, Chen X-L, Singer HA, Murphy RA, Rembold CM. Nitrovasodilators relax arterial smooth muscle by decreasing [Ca2+]i, [Ca2+]i sensitivity, and uncoupling stress from myosin phosphorylation. Am J Physiol 1992; 263:C461–C467.

    PubMed  CAS  Google Scholar 

  83. O’Angello EKG, Singer HA, Rembold CM. Magnesium relaxes arterial smooth muscle by decreasing intracellular [Ca2+] without changing intracellular [Mg2+]. J Clin Invest 1992; 89:1988–1994.

    Article  Google Scholar 

  84. Warshaw DM, Desrosiers JM, Work SS, Trybus KM. Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro. J Cell Biol 1990; 111:453–463.

    Article  PubMed  CAS  Google Scholar 

  85. Singer HA, Kamm KE, Murphy RA. Estimates of activation in arterial smooth muscle. Am J Physiol 1986; 251:C465–C473.

    PubMed  CAS  Google Scholar 

  86. Butler TM, Siegman MJ, Mooers SU, Narayan SR. Myosin-product complex in the resting state and during relaxation of smooth muscle. Am J Physiol 1990; 258(Cell Physiol):C1092–C1099.

    PubMed  CAS  Google Scholar 

  87. Kamm KE, Stull JT. Regulation of smooth muscle contractile elements by second messengers. Annu Rev Physiol 1989; 51:299–313.

    Article  PubMed  CAS  Google Scholar 

  88. Ngai PK, Walsh MP. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem 1984; 259:13656–13659.

    PubMed  CAS  Google Scholar 

  89. Sobue K, Muramoto Y, Inui M, Kanda K, Kakiuchi S. Control of actin-myosin interaction of gizzard smooth muscle by calmodulin- and caldesmon-linked flip-flop mechanism. Biomed Res 1982; 2:188–196.

    Google Scholar 

  90. Ngai PK, Walsh MP. The effects of phosphorylation of smooth-muscle caldesmon. Biochem J 1987; 244:417–425.

    PubMed  CAS  Google Scholar 

  91. Lash JA, Sellers JR, Hathaway DR. The effects of caldesmon on smooth muscle heavy actomeromyosin ATPase activity and binding of heavy meromyosin to actin. J Biol Chem 1986; 261:16155–16160.

    PubMed  CAS  Google Scholar 

  92. Winder SJ, Walsh MP. Smooth muscle calponin. Inhibition of actomyosin Mg ATPase and regulation by phosphorylation. J Biol Chem 1990; 265:10148–10155.

    PubMed  CAS  Google Scholar 

  93. Tsunekawa S, Takahashi K, Abe M, Hiwada K, Ozawa K, Murachi T. Calpain proteolysis of free and bound forms of calponin, a troponin T-like protein in smooth muscle. FEBS Lett 1989; 250:493–496.

    Article  PubMed  CAS  Google Scholar 

  94. Naka M, Kureishi Y, Muroga Y, Takahashi K, Ito M, Tanaka T. Modulation of smooth muscle calponin by protein kinase C and calmodulin. Biochem Biophys Res Commun 1990; 171:933–937.

    Article  PubMed  CAS  Google Scholar 

  95. Bäräny M, Rokolya A, Bäräny K. Absence of calponin phosphorylation in contracting or resting arterial smooth muscle. FEBS Lett 1991; 279:65–68.

    Article  PubMed  Google Scholar 

  96. Pohl J, Walsh MP, Gerthoffer WT. Calponin and caldesmon phosphorylation in canine tracheal smooth muscle. Biophys J 1991; 59:58a.

    Google Scholar 

  97. Ito M, Hartshorne DJ. Phosphorylation of myosin as a regulatory mechanism in smooth muscle. In: Sperilakis N, Wood JD, eds. Frontiers in Smooth Muscle Research. New York: Alan R Liss; 1990:57–72.

    Google Scholar 

  98. Colburn JC, Michnoff CH, Hsu LC, Slaughter CA, Kamm KE, Stull JT. Sites phosphorylated in myosin light chain in contracting smooth muscle. J Biol Chem 1988; 263:19166–19173.

    PubMed  CAS  Google Scholar 

  99. Rembold CM, Murphy RA. [Ca2+]-dependent myosin phosphorylation in phorbol diester stimulated smooth muscle contraction. Am J Physiol 1988; 255(Cell Physiol):C719–C723.

    PubMed  CAS  Google Scholar 

  100. Singer HA, Oren JW, Benscoter HA. Myosin light chain phosphorylation in 32P-labeled rabbit aorta stimulated by phorbol 12,13-dibutyrate and phenylephrine. J Biol Chem 1989; 264:21215–21222.

    PubMed  CAS  Google Scholar 

  101. Karaki H. Ca2+ localization and sensitivity in vascular smooth muscle. TIPS 1989; 10:320–325.

    PubMed  CAS  Google Scholar 

  102. Jiang MJ, Morgan KG. Intracellular calcium levels in phorbol ester-induced contractions of vascular muscle. Am J Physiol 1987; 253:H1365–H1371.

    PubMed  CAS  Google Scholar 

  103. Small JV, Fürst DO, De Mey J. Localization of filamin in smooth muscle. J Cell Biol 1986; 102:210–220.

    Article  PubMed  CAS  Google Scholar 

  104. Siegman MJ, Butler TM, Mooers SU. Energetics and regulation of crossbridge states in mammalian smooth muscle. Experientia 1985; 41:1020–1025.

    Article  PubMed  CAS  Google Scholar 

  105. Hai C-M, Murphy RA. Crossbridge phosphorylation and regulation of the latch state in smooth muscle. Am J Physiol 1988; 254:C99–C106.

    PubMed  CAS  Google Scholar 

  106. Rembold CM, Murphy RA. The latchbridge model in smooth muscle: [Ca2+] can quantitatively predict stress. Am J Physiol 1990; 259(Cell Physiol):C251–C257.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rembold, C.M. (1994). [Ca2+]i and Contraction of Arterial Smooth Muscle. In: FoĂ , P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics