Skip to main content

Calcium Channels in Cells of the Anterior Pituitary

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 112 Accesses

Abstract

The mechanisms by which hypothalamic releasing and inhibiting peptides and amines control the release of anterior pituitary hormones have been the object of intense investigation for many years. They involve membrane-bound enzymes such as adenylate cyclase, and phospholipases C and A2, which liberate second messengers such as cAMP, inositol phosphates, free fatty acids, and diacylglycerides, as well as membrane-resident regulatory proteins (G proteins), which couple these enzymes to the hypothalamic hormone receptors. In addition, intracellular kinases and phosphatases that control the degree of phosphorylation and dephosphorylation of important intracellular proteins participate in the control of pituitary hormone secretion. The actions of these intracellular substances are intimately related to those of the central regulator of secretion, the calcium ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Douglas WW. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br J Pharmacol 1968; 34:451–474.

    PubMed  CAS  Google Scholar 

  2. Douglas WW. Aspects of the calcium hypothesis of stimulus-secretion coupling: Electrical activity in adenohypophyseal cells, and membrane retrieval after exocytosis. In: Hand AR, Oliver C, eds. Methods of Cell Biology. New York: Academic Press; 1981:483–501.

    Google Scholar 

  3. Hagiwara S, Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol 1982; 331:231–252.

    PubMed  CAS  Google Scholar 

  4. Adler M, Wong BS, Sabol SL, Busis N, Jackson MB, Weight FF. Action potentials and membrane ion channels in clonal anterior pituitary cells. Proc Natl Acad Sei USA 1983; 80:2086–2090.

    Article  CAS  Google Scholar 

  5. Tan K-N, Tashjian AH. Voltage-dependent calcium channels in pituitary cells in culture. 1. Characterization by 45Ca2+ fluxes. J Biol Chem 1984; 259:418–426.

    PubMed  CAS  Google Scholar 

  6. Dubinsky JM, Oxford GS. Ionic currents in two strains of rat anterior pituitary tumor cells. J Gen Physiol 1984; 83:309–339.

    Article  PubMed  CAS  Google Scholar 

  7. Matteson DR, Armstrong CM. Na and Ca channels in a transformed line of anterior pituitary cells. J Gen Physiol 1984; 83:371–394.

    Article  PubMed  CAS  Google Scholar 

  8. Armstrong CM, Matteson DR. Two distinct populations of calcium channels in a clonal line of pituitary cells. Science 1985; 227:65–67.

    Article  PubMed  CAS  Google Scholar 

  9. Matteson DR, Armstrong CM. Properties of two types of calcium channels in clonal pituitary cells. J Gen Physiol 1986; 87:161–182.

    Article  PubMed  CAS  Google Scholar 

  10. Schofl C, Meier K, Götz DM, Knepel W. cAMP- and diacylglycerol-mediated pathways elevate cytosolic free calcium concentrations via dihydropyridine-sensitive, co-conotoxin insensitive calcium channels in normal rat anterior pituitary cells. Nauyn-Schmiedeberg’s Arch Pharmacol 1989; 339:1–7.

    Article  CAS  Google Scholar 

  11. Levitan ES, Kramer RH. Neuropeptide modulation of single calcium and potassium channels detected with a new patch clamp configuration. Nature 1990; 348:545–547.

    Article  PubMed  CAS  Google Scholar 

  12. Lewis DL, Weight FF, Luini A. A guanine nucleotide-binding protein mediates the inhibition of voltage-dependent calcium current by somatostatin in a pituitary cell line. Proc Natl Acad Sei USA 1986; 83:9035–9039.

    Article  CAS  Google Scholar 

  13. Suzuki N, Kudo Y, Takagi H, Yoshioka T, Tanakadate A, Kano M. Participation of transient-type Ca2+ channels in the sustained increase of Ca2+ level in GH3 cells. J Cell Physiol 1990; 144:62–68.

    Article  PubMed  CAS  Google Scholar 

  14. Ozawa S, Kimura N. Calcium channel and prolactin release in rat clonal pituitary cells: Effects of verapamil. Am J Physiol 1982; 243:E68–E73.

    PubMed  CAS  Google Scholar 

  15. Tan K-N, Tashjian AH. Voltage-dependent calcium channels in pituitary cells in culture. II. Participation in thyrotropin-releasing hormone action on prolactin release. J Biol Chem 1983; 258:418–426.

    Google Scholar 

  16. Thaw CN, Raaka EG, Gershengorn MC. Evidence that cobalt ion inhibition of prolactin secretion occurs at an intracellular locus. Am J Physiol 1984; 247:C150–C155.

    PubMed  CAS  Google Scholar 

  17. Enyeart JJ, Aizawa T, Hinkle PM. Interaction of dihydropyridine Ca2+ agonist Bay K8644 with normal and transformed pituitary cells. Am J Physiol 1986; 250:C95–C102.

    PubMed  CAS  Google Scholar 

  18. Enyeart JJ, Sheu S-S, Hinkle PM. Dihydropyridine modulators of voltage-sensitive Ca2+ channels specifically regulate prolaction production by GH4C1 pituitary tumor cells. J Biol Chem 1987; 262:3154–3159.

    PubMed  CAS  Google Scholar 

  19. Laverriere J-N, Richard J-L, Buisson N, Martial JA, Tixier-Vidal A, Gourdji D. Thyroliberin and dihydropyridines modulate prolactin gene expression through interacting pathways in GH3 cells. Neuroendocrinology 1989; 50:693–701.

    Article  PubMed  CAS  Google Scholar 

  20. Enyeart JJ, Biagi BA, Day RN, Sheu S-S, Maurer RA. Blockade of low and high threshold Ca2+ channels by diphenylbutylpiperidine antipsychotics linked to inhibition of prolactin gene expression. J Biol Chem 1990; 265:16373–16379.

    PubMed  CAS  Google Scholar 

  21. Drouva SV, Rerat E, Bihoreau C, Laplante E, Rosolonjanahary R, Clauser H, Kordon C. Dihydropyridine-sensitive calcium channel activity related to prolactin, growth hormone, and luteinizing hormone release from anterior pituitary cells in culture: Interactions with somatostatin, dopamine and estrogens. Endocrinology 1988; 123:2762–2773.

    Article  PubMed  CAS  Google Scholar 

  22. Memo M, Castelletti L, Missale C, Valerio A, Carruba M, Spano PF. Dopaminergic inhibition of prolactin release and calcium influx induced by neurotensin in anterior pituitary is independent of cyclic AMP system. J Neurochem 1986; 47:1689–1695.

    Article  PubMed  CAS  Google Scholar 

  23. Memo M, Castelletti L, Valerio A, Missale C, Spano PF. Identification of neurotensin receptors associated with calcium channels and prolactin release in rat pituitary. J Neurochem 1986; 47:1682–1688.

    Article  PubMed  CAS  Google Scholar 

  24. Lledo P-M, Legendre P, Israel J-M, Vincent J-D. Dopamine inhibits two characterized voltage-dependent calcium currents in identified rat lactotroph cells. Endocrinology 1990; 127:990–1001.

    Article  PubMed  CAS  Google Scholar 

  25. Lledo P-M, Israel J-M, Vincent J-D. Chronic stimulation of D2 dopamine receptors specifically inhibits calcium but not potassium currents in rat lactotrophs. Brain Res 1991; 558:231–238.

    Article  PubMed  CAS  Google Scholar 

  26. Mollard P, Vacher P, Dufy B, Barker JL. Somatostatin blocks Ca2+ action potential activity in prolactin-secreting tumor cells through coordinate actions on K+ and Ca2+ conductances. Endocrinology 1988; 123:721–732.

    Article  PubMed  CAS  Google Scholar 

  27. Lewis DL, Goodman MB, St. John PA, Barker JL. Calcium currents and Fura-2 signals in fluorescence-activated cell sorted lactotrophs and somatotrophs of rat anterior pituitary. Endocrinology 1988; 123:611–612.

    Article  PubMed  CAS  Google Scholar 

  28. Lledo P-M, Guerineau N, Mollard P, Vincent J-D, Israel J-M. Physiological characterizatin of two functional states in subpopulations of prolactin cells from lactating rats. J Physiol 1991; 437:477–494.

    PubMed  CAS  Google Scholar 

  29. Cota G, Hiriart M, Horta J, Torres-Escalante JL. Calcium channels and basal prolactin secretion in single male rat lactotrophs. Am J Physiol 1990; 259.C949–C959.

    PubMed  CAS  Google Scholar 

  30. Bicknell RJ, Schofield JG. Inhibition by somatostatin of bovine growth hormone secretion following sodium channel activation. J Physiol 1981; 316:85–96.

    PubMed  CAS  Google Scholar 

  31. Mason WT, Rawlings SR. Whole cell recordings of ionic currents in bovine somatotrophs and their involvement in growth hormone secretion. J Physiol 1988; 405:577–593.

    PubMed  CAS  Google Scholar 

  32. Chen C, Zhang J, Vincent J-D, Israel J-M. Sodium and calcium currents in action potentials of rat somatotrophs: Their possible functions in growth hormone secretions. Life Sei 1990; 46:983–989.

    Article  CAS  Google Scholar 

  33. Bresson L, Fahmi M, Sartor P, Dufy B, Dufy-Barbe L. Growth hormone releasing factor stimulates calcium entry in the GH3 pituitary cell line. Endocrinology 1991; 129:2126–2130.

    Article  PubMed  CAS  Google Scholar 

  34. Nussinovitch I. Somatostatin inhibits two types of voltage-activated calcium currents in rat growth hormone secreting cells. Brain Res 1989; 504:136–138.

    Article  PubMed  CAS  Google Scholar 

  35. Reisine T. Cellular mechanisms of somatostatin inhibition of calcium influx in anterior pituitary cell line AtT-20. J Pharmacol Exp Ther 1990; 254: 646–651.

    PubMed  CAS  Google Scholar 

  36. Richardson UI. Multiple classes of calcium channels in mouse pituitary tumor cells. Life Sei 1986; 38:41–50.

    Article  CAS  Google Scholar 

  37. Guerineau N, Corcuff J-B, Tabarin A, Mollard P. Spontaneous and corticotropin-releasing factor induced cytosolic calcium transients in corticotrophs. Endocrinology 1991; 129:409–420.

    Article  PubMed  CAS  Google Scholar 

  38. Mollard P, Vacher P, Rogawski MA, Dufy B. Vasopressin enhances a calcium current in human ACTH-secreting pituitary adenoma cells. FASEB J 1988; 2:2907–2912.

    PubMed  CAS  Google Scholar 

  39. Schrey MP, Brown BL, Ekins PR. Studies on the role of calcium and cyclic nucleotides in the control of TSH secretion. Mol Cell Endocrinol 1978; 11:249–264.

    Article  PubMed  CAS  Google Scholar 

  40. Roussel J-P, Astier H. Involvement of dihydropyridine-sensitive calcium channels in the GABAA potentiation of TRH-induced TSH release. Eur J Pharmacol 1990; 190:135–145.

    Article  PubMed  CAS  Google Scholar 

  41. Conn PM, Rogers DC. Gonadotropin release from pituitary cultures following activation of endogenous ion channels. Endocrinology 1980; 107:2133–2134.

    Article  PubMed  CAS  Google Scholar 

  42. Mason WT, Waring DW. Electrophysiological recordings from gonadotrophs. Neuroendocrinology 1985; 41:258–268.

    Article  PubMed  CAS  Google Scholar 

  43. Sikdar SK, Waring DW, Mason WT. Voltage activated ionic currents in gonadotrophs of the ovine pars tuberalis. Neurosci Lett 1986; 71:95–100.

    Article  PubMed  CAS  Google Scholar 

  44. Mason WT, Waring DW. Patch clamp recordings of single ion channel activation by gonadotropin releasing hormone in ovine pituitary gonadotrophs. Neuroendocrinology 1986; 43:205–219.

    Article  PubMed  CAS  Google Scholar 

  45. Mason WT, Sikdar SK. Characteristics of voltage gated Ca2+ currents in ovine gonadotrophs. J Physiol 1989; 415:367–391.

    PubMed  CAS  Google Scholar 

  46. Stutzin A, Stojilkovic SS, Catt KJ, Rojas E. Characteristics of two types of calcium channels in rat pituitary gonadotrophs. Am J Physiol 1989; 257:C865–C874.

    PubMed  CAS  Google Scholar 

  47. Marchetti C, Childs GV, Brown AM. Voltage-dependent calcium currents in rat gonadotropes separated by centrifugal elutriation. Am J Physiol 1990; 258:E589–E596.

    PubMed  CAS  Google Scholar 

  48. Chang JP, McCoy EE, Graeter J, Tasaka K, Catt KJ. Participation of voltage-dependent calcium channels in the action of gonadotropin-releasing hormone. J Biol Chem 1986; 261:9105–9108.

    PubMed  CAS  Google Scholar 

  49. Stojilkovic SS, Rojas E, Stutzin A, Izumi S-I, Catt KJ. Desensitization of pituitary gonadotropin secretion by agonist-induced inactivation of voltage-sensitive calcium channels. J Biol Chem 1989; 264:10939–10942.

    PubMed  CAS  Google Scholar 

  50. Izumi S-I, Stojilkovic SS, Iida T, Krsmanovic LZ, Omeljaniuk RJ, Catt KJ. Role of voltage sensitive calcium channels in [Ca2+] and secretory responses to activators of protein kinase C in pituitary gonadotrophs. Biochem Biophys Res Commun 1990; 170:359–367.

    Article  PubMed  CAS  Google Scholar 

  51. Stojilkovic SS, Iida T, Merelli F, Torsello A, Krsmanovic LZ, Catt KJ. Interactions between calcium and protein kinase C in the control of signaling and secretion in pituitary gonadotrophs. J Biol Chem 1991; 266:10377–10384.

    PubMed  CAS  Google Scholar 

  52. Virmani MA, Stojilkovic SS, Catt KJ. Stimulation of luteinizing hormone release by gamma aminobutyric acid (GABA) agonists: Mediation by GABAA-type receptors and activation of chloride and voltage-sensitive calcium channels. Endocrinology 1990; 126:2199–2505.

    Article  Google Scholar 

  53. Stojilkovic SS, Iida T, Merelli F, Catt KJ. Calcium signaling and secretory responses in endothelin-stimulated anterior pituitary cells. Mol Pharmacol 1991; 39:762–770.

    PubMed  CAS  Google Scholar 

  54. Crowley WR, Shah GV, Carroll BL, Kennedy D, Dockter ME, Kalra SP. Neuropeptide Y enhances luteinizing hormone (LH)-releasing hormone induced LH release and elevations in cytosolic Ca2+ in rat anterior pituitary cells: Evidence for involvement of extracellular Ca2+ influx through voltage sensitive channels. Endocrinology 1990; 127:1487–1494.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lawson, D.M. (1994). Calcium Channels in Cells of the Anterior Pituitary. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics