Skip to main content

Characterization of Ion Channels in the Central Nervous System: Insights from Radioligand Binding, Autoradiography, and In Situ Hybridization Histochemistry

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 119 Accesses

Abstract

Ion channels are molecules that form pores in the membrane to allow ion flow and several classes can be distinguished on the basis of their physiological properties.1 In turn, within each class of ion channel that exists in mammalian systems there is a large diversity of subtypes. I shall present some examples of scientific research, using the techniques of radioligand binding, in vitro receptor autoradiography, and more recently the technique of in situ hybridization histochemistry, which has increased our understanding of ion channel/receptor properties. In the process, I hope to illustrate the uses and advantages of these techniques, the resolution they provide, and their compatability with each other. It should be apparent, therefore, how the application of these techniques has allowed scientists to determine the existence of ion channel/receptor protein complexes and their subtypes, allosteric interactions between different types of ion channel-related receptor molecules, the cellular localization and ontogenic development of ion channel/receptors, and the effect of experimental and pathologic changes in neuronal function on various ion channels. Finally, future directions that research in these areas may take will be discussed along with the challenges that the ever-increasing diversity of ion channels present for neurochemists and neuropharmacologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jan LY, Jan YN. Voltage-sensitive ion channels. Cell 1989; 56:13–25.

    Article  PubMed  CAS  Google Scholar 

  2. Catterall WA. Structure and function of voltage-sensitive ion channels. Science 1988; 242:50–61.

    Article  PubMed  CAS  Google Scholar 

  3. Rudy B. Diversity and ubiquity of K channels. Neuroscience 1988; 25: 729–749.

    Article  PubMed  CAS  Google Scholar 

  4. Betz H. Ligand-gated ion channels in the brain: The amino acid receptor superfamily. Neuron 1990; 5:383–392.

    Article  PubMed  CAS  Google Scholar 

  5. Gordon D. Ion channels in nerve and muscle cells. Curr Opin Cell Biol 1990; 2:695–707.

    Article  PubMed  CAS  Google Scholar 

  6. Hille B. Ionic channels in excitable membranes. 2nd ed. Sunderland, Mass.: Sinauer Associates; 1991.

    Google Scholar 

  7. Miller RJ. Voltage-sensitive Ca2+ channels. J Biol Chem 1992; 267:1403–1406.

    PubMed  CAS  Google Scholar 

  8. Bormann J, Hamill OP, Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurons. J Physiol (Lond) 1987; 385:243–286.

    CAS  Google Scholar 

  9. Beneski DA, Catterall WA. Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sei USA 1980; 77:639–643.

    Article  CAS  Google Scholar 

  10. Sharkey RG, Beneski DA, Catterall WA. Differential labelling of the a and ßl subunits of the sodium channel by photoreactive derivatives of scorpion toxin. Biochemistry 1984; 23:6078–6086.

    Article  PubMed  CAS  Google Scholar 

  11. Barchi RL, Cohen SA, Murphy LE. Purification from rat sacrolemma of the saxitoxin-binding component of the excitable membrane sodium channel. Proc Natl Acad Sei USA 1980; 77:1306–1310.

    Article  CAS  Google Scholar 

  12. Triggle DJ, Janis RA. Calcium channel ligands. Ann Rev Pharmacol Toxicol 1987; 27:347–369.

    Article  CAS  Google Scholar 

  13. Bellemann P, Ferry D, Lübbecke F, Glossmann H. [3H]Nimodipine and [3H]nitrendipine as tools to directly identify the sites of action of 1,4-dihydropyridine calcium antagonists in guinea pig tissues. Arzneim-Forsch/ Drug Res 1982; 32:361–363.

    CAS  Google Scholar 

  14. Murphy KMM, Snyder SH. Calcium antagonist receptor binding sites labeled with [3H]nitrendipine. Eur J Pharmacol 1982; 77:201–202.

    Article  PubMed  CAS  Google Scholar 

  15. Lee HR, Roeske WR, Yamamura HI. High affinity specific [3H](+)PN 200–110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart. Life Sei 1984; 35:721–732.

    Article  CAS  Google Scholar 

  16. Gould RJ, Murphy KMM, Reynolds IJ, Snyder SH. [3H]nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sei USA 1982; 79:3656–3660.

    Article  CAS  Google Scholar 

  17. Yamamura HI, Schoemaker H, Boles RG, Roeske WR. Diltiazem enhancement of [3H]nitrendipine binding to calcium channel-associated drug receptor sites in rat brain synaptosomes. Biochem Biophys Res Commun 1982; 108:640–646.

    Article  PubMed  CAS  Google Scholar 

  18. Hoick M, Fischli W, Hengartner U. Effects of temperature and allosteric modulators of [3H]nitrendipine binding: Methods for detecting potential Ca2+ channel blockers. J Receptor Res 1984; 4:557–695.

    Google Scholar 

  19. Boles RG, Yamamura HI, Schoemaker H, Roeske WR. Temperature-dependent modulation of [3H]nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes. J Pharmacol Exp Ther 1984; 229:333–339.

    PubMed  CAS  Google Scholar 

  20. Reynolds IJ, Snyder SH. Calcium antagonist receptors. In: Narahashi T, ed. Ion Channels, Vol 1. New York: Plenum Press; 1988:213–249.

    Google Scholar 

  21. Ferry DR, Rombusch M, Göll A, Glossmann H. Photoaffinity labelling of Ca2+ channels with [3H]azidopine. FEBS Lett 1984; 169:112–118.

    Article  PubMed  CAS  Google Scholar 

  22. Reynolds IJ, Snowman AM, Snyder SH. (-)[3H]Desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: Differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 1986; 237:731–738.

    PubMed  CAS  Google Scholar 

  23. Olivera BM, Rivier J, Clark C, Ramilo CA, Corpuz GP, Abogadie FC, Mena EE, Woodward SR, Hillyard DR, Cruz LJ. Diversity of Conus neuropeptides. Science 1990; 249:257–263.

    Article  PubMed  CAS  Google Scholar 

  24. Sher E, Clementi F. co-Conotoxin-sensitive voltage-operated calcium channels in vertebrate cells. Neuroscience 1991; 42:301–307.

    Article  PubMed  CAS  Google Scholar 

  25. Cruz LJ, Olivera BM. Calcium channel antagonists. co-Conotoxin defines a new high affinity site. J Biol Chem 1986; 261:6230–6233.

    PubMed  CAS  Google Scholar 

  26. Takemura M, Fukui H, Wada H. Different localization of receptors for co-conotoxin and nitrendipine in rat brain. Biochem Biophys Res Commun 1987; 149:982–988.

    Article  PubMed  CAS  Google Scholar 

  27. Dooley DJ, Lickert M, Lupp A, Osswald H. Distribution of 125I-co-conotoxin GVIA and 3H-isradipine binding sites in the central nervous system of rats of different ages. Neurosci Lett 1988; 93:318–323.

    Article  PubMed  CAS  Google Scholar 

  28. Wagner JA, Snowman AM, Biswas A, Olivera BM, Snyder SH. co-Conotoxin GVIA binding to a high-affinity receptor in brain: Characterization, calcium sensitivity and solubilization. J Neurosci 1988; 8:3354–3359.

    PubMed  CAS  Google Scholar 

  29. Herdon H, Nahorski SR. Investigations of the roles of dihydropyridine and co-conotoxin-sensitive calcium channels in mediating depolarization-evoked endogenous dopamine release from striatal slices. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340:36–40.

    Article  CAS  Google Scholar 

  30. Dooley DJ, Lupp A, Hertting G, Osswald H. co-Conotoxin GVIA and pharmacological modulation of hippocampal noradrenaline release. Eur J Pharmacol 1988; 148:261–267.

    Article  PubMed  CAS  Google Scholar 

  31. Lundy PM, Frew R, Fuller TW, Hamilton MG. Pharmacological evidence of a co-conotoxin, dihydropyridine-insensitive neuronal Ca2+ channel. Eur J Pharmacol Mol Pharmacol Sect 1991; 206:61–68.

    Article  CAS  Google Scholar 

  32. Lundy PM, Hong A, Frew R. Inhibition of a dihydropyridine, co-conotoxin insensitive Ca2+ channel in rat synaptosomes by venom of the spider Hololena curta. Eur J Pharmacol Mol Pharmacol Sect 1992; 225:51–56.

    Article  CAS  Google Scholar 

  33. Ashcroft FM. Adenosine 5′-triphosphate-sensitive potassium channels. Annu Rev Neurosci 1988; 11:97–118.

    Article  PubMed  CAS  Google Scholar 

  34. Triggle DJ. Potassium channels and potassium channel modulators. In: Neumeyer JL, ed. Neurotransmissions, Vol VI. Natick, Mass.: Research Biochemicals; 1990:1–5.

    Google Scholar 

  35. Bernardi H, Fosset M, Lazdunski M. Characterization, purification and affinity labeling of brain [3H]glibenclamide-binding protein, a putative neuronal ATP-regulated K+ channel. Proc Natl Acad Sei USA 1988; 85:9816–9820.

    Article  CAS  Google Scholar 

  36. Mourre C, Ben AY, Bernardi H, Fosset M, Lazdunski M. Antidiabetic sulfonylureas: Localization of binding sites in the brain and effects on the hyper-polarization induced by anoxia in hippocampal slices. Brain Res 1989; 486:159–164.

    Article  PubMed  CAS  Google Scholar 

  37. Hughes M, Romey G, Duval D, Vincent JP, Lazdunski M. Apamin as a selective blocker of the calcium-depend potassium channel on neuroblastoma cells: Voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sei USA 1982; 79:1308–1312.

    Article  Google Scholar 

  38. Miller C, Moczydlowski E, Latorre R, Phillips M. Charybdotoxin, a high affinity protein inhibitor of single Ca2+-activated K+ channels of mammalian skeletal muscle. Nature 1985; 313:316–318.

    Article  PubMed  CAS  Google Scholar 

  39. Farley J, Rudy B. Multiple types of voltage-dependent Ca2+ activated K+ channels of large conductance in rat brain synaptosomal membrane. Biophys J 1988; 53:919–934.

    Article  PubMed  CAS  Google Scholar 

  40. Vazquez J, Feigenbaum P, King VF, Kaczorowski GJ, Garcia ML. Characterization of high affinity binding sites for charybdotoxin in synaptic plasma membranes from rat brain. J Biol Chem 1990; 265:15564–15571.

    PubMed  CAS  Google Scholar 

  41. Halliwell JV, Othman IB, Pelchen-Matthews A, Dolly JO. Central action of dendrotoxin: Selective reduction of a transient K+ conductance in hippocampus and binding to localized receptors. Proc Natl Acad Sei USA 1986; 83:493–497.

    Article  CAS  Google Scholar 

  42. Penner R, Petersen M, Pierau FK, Dreyer F. Dendrotoxin: A selective blocker of a non-inactivating potassium current in guinea-pig dorsal root ganglion neurones. Pfluegers Arch Gen Physiol 1986; 407:365–369.

    Article  CAS  Google Scholar 

  43. Awan KA, Dolly JO. K+ channel sub-types in rat brain: Characteristic locations revealed using ß-bungarotoxin, a- and 5-dendrotoxins. Neuroscience 1991; 40:29–39.

    Article  PubMed  CAS  Google Scholar 

  44. Cortes R, Supavilai P, Karobath M, Palacios JM. Calcium antagonist binding sites in the rat brain: Quantitative autoradiographic mapping using the 1,4-dihydropyridines [3H]PN 200–110 and [3H]PY 108–068. J Neural Transm 1984; 60:169–197.

    Article  PubMed  CAS  Google Scholar 

  45. Cortes R, Supavilai P, Karobath M, Palacios JM. The effects of lesions in the rat hippocampus suggest the association of calcium channel blocker binding sites with specific neuronal population. Neurosci Lett 1983; 42:249–254.

    Article  PubMed  CAS  Google Scholar 

  46. Supavilai P, Cortes R, Palacios JM, Karobath M. Calcium entry blockers: autoradiographic mapping of their binding sites in rat brain. Prog Brain Res 1985; 63:89–95.

    Article  PubMed  CAS  Google Scholar 

  47. Ferry DR, Göll A, Gadon C, Glossmann H. (-)-3H-desmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 1984; 327:183–187.

    Article  CAS  Google Scholar 

  48. Kerr LM, Filloux F, Olivera BM, Jackson H, Wamsley JK. Autoradiographic localization of calcium channels with [125I]co-conotoxin in rat brain. Eur J Pharmacol 1988; 146:181–183.

    Article  PubMed  CAS  Google Scholar 

  49. Takemura M, Kiyama H, Fukui H, Tohyama M, Wada H. Distribution of the co-conotoxin receptor in rat brain. An autoradiographic mapping. Neuroscience 1989; 32:405–416.

    CAS  Google Scholar 

  50. Ahlijanian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 1990; 4:819–832.

    Article  PubMed  CAS  Google Scholar 

  51. Westenbroek RE, Ahlijanian MK, Catterall WA. Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons. Nature 1990; 347:281–284.

    Article  PubMed  CAS  Google Scholar 

  52. Mourre C, Cervera P, Lazdunski M. Autoradiographic analysis in rat brain of the postnatal ontogeny of voltage-dependent Na+ channels, Ca2+-dependent K+ channels and slow Ca2+ channels identified as receptors for tetrodotoxin, apamin and (-)desmethoxyverapamil. Brain Res 1987; 417:21–32.

    Article  PubMed  CAS  Google Scholar 

  53. Olsen RW, McCabe RT, Wamsley JK. GABAA receptor subtypes: Autoradiographic comparison of GAB A, benzodiazepine, and convulsant binding sites in the rat central nervous system. J Chem Neuroanat 1990; 3:59–76.

    PubMed  CAS  Google Scholar 

  54. Levitan ES, Schofield PR, Burt DR, Rhee LM, Wisden W, Köhler M, Fujita N, Rodriguez HF, Stephenson A, Darlison MG, Barnard EA, Seeburg PH. Structural and functional basis for GABAA receptor heterogeneity. Nature 1988; 335:76–79.

    Article  PubMed  CAS  Google Scholar 

  55. Mourre C, Widmann C, Lazdunski M. Saxitoxin-sensitive Na+ channels: Presynaptic localization in cerebellum and hippocampus of neurological mutant mice. Brain Res 1990; 533:196–202.

    Article  PubMed  CAS  Google Scholar 

  56. Vilaró MT, Martinez-Mir MI, Sarasa M, Pompeiano M, Palacios JM, Mengod G. Molecular neuroanatomy of neurotransmitter receptors: The use of in situ hybridization histochemistry for the study of their anatomical and cellular localization. In: Osborne NN, ed. Current Aspects of the Neurosciences, Vol 3. London: Macmillan Press; 1991:1–36.

    Google Scholar 

  57. Wada K, Ballivet M, Boulter J, Connolly J, Wada E, Deneris ES, Swanson LW, Heinemann S, Patrick J. Functional expression of a new pharmacological subtype of nicotonic acetylcholine receptor. Science 1988; 240:330–334.

    Article  PubMed  CAS  Google Scholar 

  58. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson L. Distribution of alpha2, alpha3, alpha4 and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: A hybridization histochemical study in the rat. J Comp Neurol 1989; 284:314–335.

    Article  PubMed  CAS  Google Scholar 

  59. Clarke PBS, Schwartz RD, Paul SM, Pert CD, Pert A. Nicotinic binding in rat brain: Autoradiographic comparison of [3H]acetylcholine, [3H]nicotine and [125I]-a-bungarotoxin. J Neurosci 1985; 5:1307–1315.

    PubMed  CAS  Google Scholar 

  60. Schofield PR, Darlison MG, Fujita N, Burt DR, Stephenson FA, Rodriguez H, Rhee LM, Ramachandran J, Reale V, Glencorse TA, Seeburg PH, Barnard EA. Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 1987; 328:221–227.

    Article  PubMed  CAS  Google Scholar 

  61. Pritchett DB, Sontheimer H, Shivers BD, Ymer S, Kettenmann H, Schofield PR, Seeburg PH. Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 1989; 338:582–585.

    Article  PubMed  CAS  Google Scholar 

  62. Wisden W, Laurie DJ, Monyer H, Seeburg PH. The distribution of 13 GABAA receptor subunit messenger RNAs in the rat brain I. Telencephalon, diencephalon, mesencephalon. J Neurosci 1992; 12:1040–1062.

    PubMed  CAS  Google Scholar 

  63. Wisden W, Morris BJ, Darlison MG, Hunt SP, Barnard EA. Localization of GABAA receptor a-subunit mRNAs in relation to receptor subtypes. Mol Brain Res 1989; 5:305–310.

    Article  PubMed  CAS  Google Scholar 

  64. Pritchett DB, Lüddens H, Seeburg PH. Type I and Type II GABAA benzodiazepine receptors produced in transfected cells. Science 1989; 245:1389–1392.

    Article  PubMed  CAS  Google Scholar 

  65. Shivers BD, Killisch I, Sprengel R, Sontheimer H, Köhler M, Schofield PR, Seeburg PH. Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 1989; 3:327–337.

    Article  PubMed  CAS  Google Scholar 

  66. Unnerstall JR, Kuhar MJ, Niehoff DL, Palacios JM. Benzodiazepine receptors are coupled to a subpopulation of y-aminobutyric acid (GABA) receptors: Evidence from a quantitative autoradiographic study. J Pharmacol Exp Ther 1981; 218:797–804.

    PubMed  CAS  Google Scholar 

  67. Palacios JM, Wamsley JK, Kuhar MJ. High affinity GABA receptors: Autoradiographic localization. Brain Res 1981; 222:285–307.

    Article  PubMed  CAS  Google Scholar 

  68. Betz H. Glycine receptors: Heterogeneous and widespread in the mammalian brain. Trends Neurosci 1991; 14:458–461.

    Article  PubMed  CAS  Google Scholar 

  69. Sato K, Zhang J-H, Saika T, Sato M, Tada K, Tohyama M. Localization of glycine receptor ai subunit mRNA-containing neurons in the rat brain: An analysis using in situ hybridization histochemistry. Neuroscience 1991; 43: 381–395.

    Article  PubMed  CAS  Google Scholar 

  70. Hoch W, Betz H, Becker C-M. Primary cultures of mouse spinal cord express the neonatal isoforms of the inhibitory glycine receptor. Neuron 1989; 3:339–348.

    Article  PubMed  CAS  Google Scholar 

  71. Malosio M-L, Marquèze-Pouey B, Kutse J, Betz H. Widespread expression of glycine receptor subunit mRNAs in the adult and developing rat brain. EMBO J 1991; 10:2401–2409.

    PubMed  CAS  Google Scholar 

  72. Furuyama T, Sato M, Sato K, Araki T, Inagaki S, Takagi H, Tohyama M. Co-expression of glycine receptor ß subunit and GABAA receptor y subunit mRNA in the rat dorsal root ganglion cells. Mol Brain Res 1992; 12:335–338.

    Article  PubMed  CAS  Google Scholar 

  73. Keinänen K, Wisden W, Sommer B, Werner P, Herb A, Verdoorn TA, Sakmann B, Seeburg PH. A family of AMPA-selective glutamate receptors. Science 1990; 249:556–560.

    Article  PubMed  Google Scholar 

  74. Snutch TP, Leonard JP, Gilbert MM, Lester HA, Davidson N. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sei USA 1990; 87:3391–3395.

    Article  CAS  Google Scholar 

  75. Chin H, Smith MA, Kim H-L, Kim H. Expression of dihydropyridine-sensitive brain calcium channels in the rat central nervous system. FEBS Lett 1992; 299:69–74.

    Article  PubMed  CAS  Google Scholar 

  76. Dubel SJ, Starr TVB, Hell J, Ahlijanian MK, Enyeart JJ, Catterall WA, Snutch TP. Molecular cloning of the a-1 subunit of an CD-conotoxin-sensitive calcium channel. Proc Natl Acad Sei USA 1992; 89:5058–5062.

    Article  CAS  Google Scholar 

  77. Tsaur M-L, Sheng M, Lowenstein DH, Jan YN, Jan LY. Differential expression of K+ channel mRNAs in the rat brain and down-regulation in the hippocampus following seizures. Neuron 1992; 8:1055–1067.

    Article  PubMed  CAS  Google Scholar 

  78. Rudy B, Kentros C, Weiser M, Frühling D, Serodio P, Vega-Saenz de Miera E, Ellisman MH, Pollock JA, Baker H. Region-specific expression of a K+ channel gene in brain. Proc Natl Acad Sei USA 1992; 89:4603–4607.

    Article  Google Scholar 

  79. Peroutka SJ, Allen GS. Calcium channel antagonist binding sites labelled by 3H-nimodipine in human brain. J Neurosurg 1983; 59:933–937.

    Article  PubMed  CAS  Google Scholar 

  80. Mourre C, Moll C, Lombet A, Lazdunski M. Distribution of voltage-dependent Na+ channel identified by high affinity receptors for tetrodotoxin and saxitoxin in rat and human brains: Quantitative autoradiographic analysis. Brain Res 1988; 448:128–139.

    Article  PubMed  CAS  Google Scholar 

  81. Palacios JM, Probst A, Cortes R. Mapping receptors in the human brain. Trends Neurosci 1986; 9:284–289.

    Article  CAS  Google Scholar 

  82. Watson DL, Carpenter CL, Marks SS, Greenberg DA. Striatal calcium channel antagonist receptors in Huntington’s Disease and Parkinson’s Disease. Ann Neurol 1988; 23:303–305.

    Article  PubMed  CAS  Google Scholar 

  83. Ikeda M, Dewar D, McCulloch J. Selective reduction of [125I]apamin binding sites in Alzheimer hippocampus: A quantitative autoradiographic study. Brain Res 1991; 567:51–56.

    Article  PubMed  CAS  Google Scholar 

  84. Jansen KLR, Faull RLM, Dragunow M, Synek BL. Alzheimer’s disease: Changes in hippocampal N-methyl-D-aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors—An autoradiographic study. Neuroscience 1990; 39:613–627.

    Article  PubMed  CAS  Google Scholar 

  85. Dewar D, Chalmers DT, Graham DI, McCulloch J. Glutamate metabotropic and AMP A binding sites are reduced in Alzheimer’s disease: An autoradiographic study of the hippocampus. Brain Res 1991; 553:58–64.

    Article  PubMed  CAS  Google Scholar 

  86. Becker C-M. Disorders of the inhibitory glycine receptor: The spastic mouse. FASEB J 1990; 4:2767–2771.

    PubMed  CAS  Google Scholar 

  87. Gundlach AL. Disorder of the inhibitory glycine receptor: Inherited myoclonus in Poll Hereford calves. FASEB J 1990; 4:2761–2766.

    PubMed  CAS  Google Scholar 

  88. Kril JJ, Gundlach AL, Dodd PR, Johnston GAR, Harper CG. Cortical dihydropyridine binding sites are unaltered in human alcoholic brain. Ann Neurol 1989; 26:395–397.

    Article  PubMed  CAS  Google Scholar 

  89. Ben-Ari Y, Krnjevic K, Crépel V. Activators of ATP-sensitive K+ channels reduce anoxic depolarization in CA3 hippocampal neurons. Neuroscience 1990; 37:55–60.

    Article  PubMed  CAS  Google Scholar 

  90. Mintz IM, Venema VJ, Adams ME, Bean BP. Inhibition of N- and L-type Ca2+ channels by the spider venom toxin co-Aga-IIIA. Proc Natl Acad Sei USA 1991; 88:6628–6631.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Gundlach, A.L. (1994). Characterization of Ion Channels in the Central Nervous System: Insights from Radioligand Binding, Autoradiography, and In Situ Hybridization Histochemistry. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics