Skip to main content

Calcium Ion Homeostasis in the Aging Brain: Regulation of Voltage-Dependent Calcium Channels

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 113 Accesses

Abstract

The tuning of neuronal networks is controlled by a number of processes that are in turn strictly controlled by cytosolic free Ca2++ ions. Short-term functions such as neurotransmitter release and enzymatic activity, and long-term mechanisms such as cytoskeletal integrity, neuronal plasticity, and even gene expression, depend on a rise in free intraneuronal calcium levels.1 Although a “transient” rise in calcium concentration is of physiologic significance, a prolonged calcium increase in the cytoplasm, if not buffered properly, can lead to cell membrane derangement (overstimulation of calcium-dependent kinases, lipases, and proteases) that may end in cell death.2 Intracellular calcium “oscillations” represent an additional mechanism for neuronal and endocrine signaling,3 which has been investigated in particular in nonexcitable cells.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pietrobon D, Di Virgilio F, Pozzan T. Structional And Functional Aspects Of Calcium Homeostasis In Eukaryotic Cells. Eur J Biochem 1990; 193:599–622.

    PubMed  CAS  Google Scholar 

  2. Choi DW. Calcium-mediated neurotoxicity:Relationship to specific channel types and role in ischemic damage. TINS 1988; 11:465–469.

    PubMed  CAS  Google Scholar 

  3. Miller RJ. Calcium Signalling in Neurons. TINS 1988; 11:415–419.

    PubMed  CAS  Google Scholar 

  4. Berridge MJ. Inositol trisphosphate, calcium, lithium, and cell signaling. JAMA 1989; 262(13): 1834–1841.

    PubMed  CAS  Google Scholar 

  5. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem 1987; 56:395–433.

    CAS  Google Scholar 

  6. Meldolesi J, Pozzan T. Pathways of Ca2++ influx at the plasma membrane: Voltage-, receptor-, and second messenger-operated channels. Exp Cell Res 1987; 171:271–283.

    PubMed  CAS  Google Scholar 

  7. Neering IR, McBurney RN. Role for microsomal Ca storage in mammalian neurones? Nature 1984; 309:158–160.

    PubMed  CAS  Google Scholar 

  8. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature 1989; 341:197–205.

    PubMed  CAS  Google Scholar 

  9. Hess P. Calcium channels in vertebrate cells. Nature 1990; 13:1337–1356.

    Google Scholar 

  10. Ascher P, Nowak L. Electrophysiological studies of NMDA receptors. TINS 1987; 10:284–298.

    CAS  Google Scholar 

  11. Tsien RW, Elliot PT, Home WA. Molecular diversity of voltage-dependent calcium channels. TIPS 1991; 12:349–354.

    PubMed  CAS  Google Scholar 

  12. Nowicky MC, Fox AP, Tsien RW. Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 1985; 316:443–446.

    Google Scholar 

  13. Llinas R, Sugimori M, Lin JW, Cherskey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sei USA 1989; 86:1689–1693.

    CAS  Google Scholar 

  14. Olivera BM, Gray WR, Zeikus R, Mcintosh JM, Varga J, Rivier J, Santos V, Cruz LJ. Peptide neurotoxin from fish hunting cone snails. Science 1985; 230:1338–1343.

    PubMed  CAS  Google Scholar 

  15. Miller RJ. Voltage sensitive calcium channels. J Biol Chem 1992; 267:1403–1406.

    PubMed  CAS  Google Scholar 

  16. Glossman H, Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem 1990; 114:1–105.

    Google Scholar 

  17. Tytgat J, Vereecke J, Cornelliet E. Differential effect of verapamil and flunarizine on cardiac L-type and T-type channels. Arch Pharmacol 1990; 337:690–692.

    Google Scholar 

  18. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989; 51:367–384.

    PubMed  CAS  Google Scholar 

  19. Triggle DJ, Janis RA. Calcium channels ligands. Ann Rev Pharmacol Toxicol 1987; 27:347–369.

    CAS  Google Scholar 

  20. Govoni S, Battaini F, Magnoni MS, Lucchi L, Rius RA, Trabucchi M. Plasticity of neuronal L-type calcium channels. Ann NY Acad Sei 1988; 522:187–202.

    CAS  Google Scholar 

  21. Triggle DJ, Langs DA, Janis RA. Calcium channels ligands: Structure-function relationships of the 1,4-dihydropyridines. Med Res Rev 1989; 9:123–180.

    PubMed  CAS  Google Scholar 

  22. Gould RJ, Murphy KMM, Snyder SH. In vitro autoradiography of (3H)nitrendipine localizes calcium channels to synaptic rich zone. Brain Res 1985; 330:217–223.

    PubMed  CAS  Google Scholar 

  23. Hess P, Tsien RW. Mechanism of ion permeation through calcium channels. Nature 1984; 309:453–456.

    PubMed  CAS  Google Scholar 

  24. Ramkumar V, El-Fakahany EE. Morphine treatment increases nimodipine binding sites in rat brain. Ann NY Acad Sei 1988; 522:207–209.

    Google Scholar 

  25. Littleton JM, Little HJ. Dihydropyridine-sensitive Ca channels in brain are involved in the CNS hyperexcitability associated with alcohol withdrawal states. Ann NY Acad Sei 1988; 522:199–202.

    Google Scholar 

  26. Govoni S, Goss I, Di Giovine S, Battaini F, Trabucchi M. Calcium antagonists inhibit met-enkephalin immunoreactive material release: in vitro and ex vivo experiments. J Neural Transm 1990; 80:1–8.

    CAS  Google Scholar 

  27. Hirning LD, Fox AP, McCleskey B, Olivera BM, Thayer SA, Miller RJ, Tsien RW. Dominant role of N type calcium channels in evoked release of norepinephrine from sympathetic neurons. Science 1988; 239:57–60.

    PubMed  CAS  Google Scholar 

  28. Rane SG, Holz GG, Dunlap K. Dihydropiridine inhibition of neuronal calcium currents and substance P release. Pfluegers Arch 1987; 409:361–366.

    CAS  Google Scholar 

  29. Dayanithi G, Martin-Moutot N, Barlier S, Colin DA, Kretz-Zoepfel M, Couraud F, Nordmann JJ. The calcium channel antagonist © conotoxin inhibits secretion from peptidergic nerve terminals. Biochem Biophys Res Commun 1988; 156:255–262.

    PubMed  CAS  Google Scholar 

  30. Dooley DJ, Lupp A, Hertting G. Inhibition of central neurotransmitter release by omega-conotoxin GVIA, a peptide modulator of the N-type voltage-sensitive calcium channel. Arch Pharmacol 1987; 336:467–470.

    CAS  Google Scholar 

  31. Novi I. Calcium et le magnesium du cerveau des differents ages. Arch Ital Biol 1912; 58:333–336.

    Google Scholar 

  32. Gibson GE, Peterson C. Calcium and the aging nervous system. Neurobiol Aging 1987; 8:329–344.

    PubMed  CAS  Google Scholar 

  33. Khatchaturian Z. Towards theories of brain aging. In: Kay DW, Burrows GD, eds. Handbook of Studies in Psychiatry and Old Age. New York: Elsevier; 1984:7–30.

    Google Scholar 

  34. Khachaturian Z. The role of calcium regulation in brain aging: Reexamination of a hypothesis. Aging 1989; 1:17–34.

    PubMed  CAS  Google Scholar 

  35. Landfield PW, Pitler TA. Prolonged calcium-dependent afterhyperpolar-ization in hippocampal neurons of aged rats. Science 1984; 226:1089–1091.

    PubMed  CAS  Google Scholar 

  36. Barnes CA. Memory deficits associated with senescence: A neurophysi-ological and behavioral study in the rat. J Comp Physiol Psychol 1979; 93:74–104.

    PubMed  CAS  Google Scholar 

  37. Landfield PW, McGaugh JL, Lynch G. Impaired synaptic potentiation process in the hippocampus of aged, memory-deficient rats. Brain Res 1978; 150:85–101.

    PubMed  CAS  Google Scholar 

  38. Marty A, Neher E. Tight-seal whole cell recording. In: Sakmann B, Neher E, eds. Single Channel Recording. New York: Plenum; 1983:107–132.

    Google Scholar 

  39. Tsien RY. Fluorescent indicators of ion concentrations. Meth Cell Biol 1989; 30:127–156.

    CAS  Google Scholar 

  40. Landfield PW, Lynch G. Impaired monosynaptic potentiation in in vitro hippocampal slices from aged memory deficient rats. J Gerontol 1977; 32:523–533.

    PubMed  CAS  Google Scholar 

  41. Deyo RA, Straube KT, Disterhoft J. Nimodipine facilitates trace conditioning of the eye-blink response in aging rabbits. Science 1989; 243:809–811.

    PubMed  CAS  Google Scholar 

  42. Landfield PW. Nimodipine modulation of aging-related increases in hippocampal calcium currents. In: Traber J, Gispen WH, eds. Nimodipine and CNS Function: New Vistas. Stuttgart: Shattaner; 1989:227–238.

    Google Scholar 

  43. Scriabine A, Schuurman T, Traber J. Pharmacological basis for the use of nimodipine in central nervous system disorders. FASEB J 1989; 3:1799–1806.

    PubMed  CAS  Google Scholar 

  44. Rich KM, Hollowell JP. Flunarizine protects neurons from death after axotomy or NGF deprivation. Science 1990; 248:1419–1421.

    PubMed  CAS  Google Scholar 

  45. Dreyer EB, Kaiser PK, Offermann JT, Lipton SA. HIV-1 coat protein neurotoxicity prevented by calcium channel antagonists. Science 1990; 248:364–367.

    PubMed  CAS  Google Scholar 

  46. Govoni S, Rius RA, Battaini F, Bianchi A, Trabucchi L. Age-related reduced affinity in (3H)-Nitrendipine labeling of brain voltage-dependent calcium channels. Brain Res 1985; 33:374–377.

    Google Scholar 

  47. Gould RJ, Murphy KMM, Snyder SH. (3H)-nitrendipine labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sei USA 1982; 79:3656–3660.

    CAS  Google Scholar 

  48. Boles RG, Yamamura HI, Schoemaker H, Roeske WR. Temperature dependent modulation of (3H)nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes. J Pharmacol Exp Ther 1984; 229:333–339.

    PubMed  CAS  Google Scholar 

  49. Striessnig J, Glossmann H, Catterall WA. Identification of a phenylalkyl-amine binding region within the alfal subunit of skeletal muscle Ca2++ channels. Proc Natl Acad Sei USA 1990; 87:9108–9112.

    CAS  Google Scholar 

  50. Battaini F, Govoni S, Rius RA, Trabucchi M. Age-dependent increase in (3H)-Verapamil binding to rat cortical membranes. Neurosci Lett 1985; 61:67–71.

    PubMed  CAS  Google Scholar 

  51. Battaini F, Govoni S, Del Vesco R, DiGiovine S, Trabucchi M. Concomitant regulation of hippocampal calcium antagonist receptors and calcium uptake by substance P. Biochem Biophys Res Commun 1987; 114:1135–1142.

    Google Scholar 

  52. Hertz L. Functional interactions between neurons and glial cells. In: Battaini F, Govoni S, Magnoni MS, Trabucchi M, eds. Regulatory Mechanisms of Neurons to Vessel Communication in the Brain. NATO ASI Series, Vol. 33. Heidelberg: Springer-Verlag; 1989:271–306.

    Google Scholar 

  53. Barres BA, Chun LLY, Corey DP. Calcium current in cortical astrocytes: Induction by cAMP and neurotransmitters and permissive effect of serum factors. J Neurosci 1989; 9:3169–3175.

    PubMed  CAS  Google Scholar 

  54. Huguet F, Huchet AM, Gerad P, Narcisse G. Characterization of dihydropiridine binding sites in the rat brain: Hypertension and age-dependent modulation of (3H)(+)-PN 200–110 binding. Brain Res 1987; 412:125–130.

    PubMed  CAS  Google Scholar 

  55. Bangalore R, Ferrante J, Hawthorn M, et al. The regulation of neuronal calcium channels. In: Paoletti R, Vanhoutte PM, Govoni S, eds. Calcium Antagonists: Pharmacology and Clinical Research. Medical Science Symposia, Vol 3, Dordrecht, Kluwer 1993: 221–230.

    Google Scholar 

  56. Ferry DR, Göll A, Gadow C, Glossman H. 3H Desmethoxyverapamil labeling of putative calcium channels in brain: Autoradiographic distribution and allosteric coupling to 1,4 dihydropyridine and diltiazem binding sites. Arch Pharmacol 1984; 321:80–83.

    Google Scholar 

  57. Kitamura Y, Zhao XZ, Ohnuki T, Nomura Y. Ligand-binding characteristics of (3H)QNB, (3H)prazosin, (3H)rauwolscine, (3H)TCP and (3H)nitrendipine to cerebral cortical and hippocampal membranes of senescence accelerated mouse. Neurosci Lett 1989; 106:334–338.

    PubMed  CAS  Google Scholar 

  58. Colvin RA, Williams RG, Eagle DT, Allen RA, Oibo SA, Ibok I. Neuronal binding of (3H)-nitrendipine in dementia. In: Miner GD, Richter RW, Blass JP, Valentine JL, Winters-Miner LA, eds. Familial Alzheimer’s Disease: Molecular Genetics and Clinical Perspectives. New York: Marcel Dekker; 1989:325–330.

    Google Scholar 

  59. Quirion R, Nair NPV. Dihydropyridine and phenylakylamines binding sites in Alzheimer disease and other neurological disorders. In: Traber J, Gispen WH, eds. Nimodipine and CNS Function: New Vistas. Stuttgart: Shattaner; 1989:257–265.

    Google Scholar 

  60. Wagner JA, Snowman AM, Biswas A, Olivera BM, Snyder SH. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: Characterization, calcium sensitivity, and solubilization. J Neurosci 1988; 8:3345–3359.

    Google Scholar 

  61. Regan LJ, Sah DWY, Bean BP. Ca2++ channels in rat central and pheripheral neurons: High-threshold current resistant to dihydropyridine blockers and omega-conotoxin. Neuron 1991; 6:269–280.

    PubMed  CAS  Google Scholar 

  62. Dooley DJ, Lickert M, Lupp A, Osswald H. Distribution of (125I)omega-conotoxin GVIA and (3H)isradipine binding sites in the central nervous system of rats of different ages. Neurosci Lett 1988; 93:318–323.

    PubMed  CAS  Google Scholar 

  63. Moresco RM, Govoni S, Battaini F, Trivulzio S, Trabucchi M. Omega-conotoxin binding decreases in aged rat brain. Neurobiol Aging 1990; 11:433–436.

    PubMed  CAS  Google Scholar 

  64. Deary IJ, Hendrickson AE. Calcium and Alzheimer’s disease. Lancet 1986; 8491:1219.

    Google Scholar 

  65. Peterson C, Ratan RR, Shelanski ML, Goldman JE. Cytosolic free calcium and cell spreading decreases in fibroblasts from aged and Alzheimer donors. Proc Natl Acad Sei USA 1986; 83:7999–8001.

    CAS  Google Scholar 

  66. Masliah E, Cole GM, Hansen LA, Mallory M, Albright T, Terry RD, Saitoh T. Protein kinase C alteration is an early biochemical marker in Alzheimer’s disease. J Neurosci 1991; 1:2759–2767.

    Google Scholar 

  67. Colvin RA, Allen RA, Williams RG, Eagle DT, Oibo JA, Miner GD. (125I)-Omega conotoxin binding to human frontal cortex from normal, Alzheimer’s and non-Alzheimer’s dementia patients. Neurobiol Aging 1990; 11:151–153.

    PubMed  CAS  Google Scholar 

  68. Carbone E, Lux HD. A low voltage activated, fully inactivating calcium channel in vertebrate sensory neurones. Nature 1984; 310:501–511.

    PubMed  CAS  Google Scholar 

  69. Hillman D, Chen S, Aung TT, Cherskey B, Sugimori M, Llinas RR. Localization of P-type calcium channels in the central nervous system. Proc Natl Acad Sei USA 1991; 88:7076–7080.

    CAS  Google Scholar 

  70. Leslie SW, Chandler LJ, Barr EM, Farrar RP. Reduced calcium uptake by rat brain mitochondria and synaptosomes in response to aging. Brain Res 1985; 329:177–183.

    PubMed  CAS  Google Scholar 

  71. Vitorica J, Satrustegui J. Involvement of mitochondria in the age-dependent decrease in calcium uptake of rat brain synaptosomes. Brain Res 1986; 378:36–48.

    PubMed  CAS  Google Scholar 

  72. Giovannelli L, Pepeu G. Effect of age on K+-induced cytosolic Ca2++ changes in rat cortical synaptosomes. J Neurochem 1989; 53:392–398.

    PubMed  CAS  Google Scholar 

  73. Martinez A, Vitórica J, Bogónez E, Satrustégui J. Differential effect of age on the pathways of calcium influx into nerve terminals. Brain Res 1987; 435:249–257.

    PubMed  CAS  Google Scholar 

  74. Gibson GE, Peterson C. Aging decreases oxidative metabolism and the synthesis and release of acetylcholine. J Neurochem 1981; 37:978–984.

    PubMed  CAS  Google Scholar 

  75. Meyer EM, Onge St E, Crews FT. Effects of aging on rat cortical presynaptic cholinergic processes. Neurobiol Aging 1984; 5:315–317.

    PubMed  CAS  Google Scholar 

  76. Pedata F, Giovannelli L, Spignoli G, Giovannini MG, Pepeu G. Phosphatidylserine increases acetylcholine release from cortical slices in aged rats. Neurobiol Aging 1985; 6:337–339.

    PubMed  CAS  Google Scholar 

  77. Scott BS. Adult neurons in cell culture: Electrophysiological characterization and use in neurobiological research. Prog Neurobiol 1982; 19:187–211.

    PubMed  CAS  Google Scholar 

  78. Mody I, Salter MW, MacDonald JF. Whole-cell voltage-clamp recording in granule cells acutely isolated from hippocampal slices of adult or aged rats. Neurosci Lett 1989; 96:70–75.

    PubMed  CAS  Google Scholar 

  79. Takahashi K, Tateishi N, Kaneda M, Akaike N. Comparison of low-threshold calcium currents in the hippocampal CA1 neurons among the newborn, adult and aged rats. Neurosci Lett 1989; 103:29–33.

    PubMed  CAS  Google Scholar 

  80. Reynolds JN, Carlen PL. Diminished currents in aged hippocampal dentate gyrus granule neurones. Brain Res 1989; 384–390.

    Google Scholar 

  81. Martinez A, Vitorica J, Satrustégui J. Cytosolic free calcium levels increase with age in rat brain synaptosomes. Neurosci Lett 1988; 88:336–342.

    PubMed  CAS  Google Scholar 

  82. Peterson C, Gibson GE. Amelioration of age-related neurochemical and behavioral deficits by 3,4-diaminopyridine. Neurobiol Aging 1983; 4:25–30.

    PubMed  CAS  Google Scholar 

  83. Meyers EM, Crews FT, Otero DH, Larsen K. Aging decreases the sensitivity of rat cortical synaptosomes to calcium ionophore-induced acetylcholine release. J Neurochem 1986; 47:1244–1246.

    Google Scholar 

  84. Michaelis ML, Johe K, Kitos TE. Age-dependent alteration in synaptic membrane systems for calcium regulation. Mech Age Dev 1984; 25:215–225.

    CAS  Google Scholar 

  85. Burnett DM, Daniell LC, Zahniser NR. Decreased efficacy of inositol 1,4,5-trisphosphate to elicit calcium mobilization from cerebrocortical microsomes of aged rats. Mol Pharmacol 1990; 37:566–571.

    PubMed  CAS  Google Scholar 

  86. Li PP, Vecil GG, Green MA, Warsh JJ. Inositol 1,4,5-trisphosphate receptor in developing and senescent rat cerebellum. Neurobiol Aging 1992; 13:89–92.

    PubMed  CAS  Google Scholar 

  87. Battaini F, Del Vesco R, Govoni S, Trabucchi M. Regulation of phorbol ester binding and protein kinase C activity in aged rat brain. Neurobiol Aging 1990; 11:563–566.

    PubMed  CAS  Google Scholar 

  88. Landfield PW, Pitler TA, Applegate MD. The effects of high Mg to Ca ratios on frequency potentiation in hippocampal slices of young and aged rats. J Neurophys 1986; 56:797–811.

    CAS  Google Scholar 

  89. Bean BP. Nitrendipine block of cardiac calcium channels: High affinity binding to the inactivated states. Proc Natl Acad Sei USA 1984; 81:6388–6392.

    CAS  Google Scholar 

  90. Skattebol A, Hruska RE, Hawthorn M, Triggle DJ. Kainic acid lesions decrease striatal dopamine receptors and 1,4-dihydropyridine sites. Neurosci Lett 1988; 89:85–89.

    PubMed  CAS  Google Scholar 

  91. Böiger GT, Basile AS, Janowsky AJ, Paul SM, Skolnick P. Regulation of dihydropyridine calcium antagonist binding sites in the rat hippocampus following neurochemical lesions. J Neurosci Res 1987; 17:285–290.

    Google Scholar 

  92. Watson DL, Carpenter CL, Marks SS, Greenberg DA. Striatal calcium channel antagonist receptors in Huntington’s disease and Parkinson’s disease. Ann Neurol 1988; 23:303–305.

    PubMed  CAS  Google Scholar 

  93. Piggott MA, Candy JM, Perry RH. (3H)Nitrendipine binding in temporal cortex in Alzheimer’s and Huntington’s disease. Brain Res 1991; 565:42–47.

    PubMed  CAS  Google Scholar 

  94. Tanabe T, Takeshima H, Mikami A, Flokerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S. Primary structure of the receptor for calcium channel blockers from scheletal muscle. Nature 1987; 328:313–318.

    PubMed  CAS  Google Scholar 

  95. Mikami A, Imoto K, Tanabe T, Niidome T, Mori Y, Takeshima H, Narumiya S, Numa S. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 1989; 340:230–233.

    PubMed  CAS  Google Scholar 

  96. Snutch TP, Leonard JP, Gilbert MM, Lester HA, Davidson N. Rat brain expresses a heterogeneous family of calcium channels. Proc Natl Acad Sei USA 1990; 87:3391–3395.

    CAS  Google Scholar 

  97. Tsien RW, Elliot PT, Home WA. Molecular diversity of voltage-dependent Ca++ channels. TIPS 1991; 12:349–354.

    PubMed  CAS  Google Scholar 

  98. Mori Y, Friedrich T, Kim MS, Mikami A, Nakai J, Ruth P, Bosse E, Hofmann I, Flockerzi V, Furuichi T, Mikoshiba K, Imoto K, Tanabe T, Numa S. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402.

    PubMed  CAS  Google Scholar 

  99. Siesjo BK. Calcium ischemia and death of brain cells. Ann NY Acad Sei 1988; 522:638–661.

    CAS  Google Scholar 

  100. Magnoni MS, Trabucchi M, Battaini F, Govoni S. The role of calcium in cerebral ischemic damage. In: Anghileri LJ, ed. The Role of Calcium in Biological Systems. Vol. V. Boca Raton, Fla.: CRC Press; 1989:197–215.

    Google Scholar 

  101. Magnoni MS, Govoni S, Battaini F, Trabucchi M. L-type calcium channels are modified in rat hippocampus by short term experimental ischemia. J Cereb Blood Flow Metab 1988; 8:96–99.

    PubMed  CAS  Google Scholar 

  102. Simon RP, Griffiths T, Evans MC, Swan JH, Meldrum BS. Calcium overload in selectivity vulnerable neurons of the hippocampus during and after ischemia: An electron microscopy study in the rat. J Cereb Blood Flow Metab 1984; 4:351–360.

    Google Scholar 

  103. Docherty RJ, Brown DA. Interaction of 1,4 dihydropyridines with somatic Ca++ currents in hippocampal CA1 neurones of the guinea pig in vitro. Neurosci Lett 1986; 70:110–115.

    PubMed  CAS  Google Scholar 

  104. Uematsu D, Greenberg JH, Hickey WF, Reinich M. Nimodipine attenuates both increase in cytosolic free calcium and histologic damage following focal cerebral ischemia and reperfusion in cats. Stroke 1989; 20:1531–1537.

    PubMed  CAS  Google Scholar 

  105. Weiss JH, Hartley DM, Koh J, Choi DW. The calcium channel blocker nifedipine attenuates slow excitatory amino acid neurotoxicity. Science 1990; 247:1474–1477.

    PubMed  CAS  Google Scholar 

  106. Abele AE, Scholz KP, Scholz WK, Miller RJ. Excitoxicity induced by enhanced excitatory neurotransmission in cultured hippocampal pyramidal neurons. Neuron 1990; 4:413–419.

    PubMed  CAS  Google Scholar 

  107. Schroeder JE, Fischbach PS, McCleskey EW. T-type calcium channels: Heterogenesous expression in rat sensory neurons and selective modulation by phorbol esters. J Neurosci 1990; 10(3):947–951.

    PubMed  CAS  Google Scholar 

  108. Gould RJ, Murphy KMM, Reynolds IJ, Snyder SH. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium antagonists. Proc Natl Acad Sei USA 1983; 80:5122–5125.

    CAS  Google Scholar 

  109. Galizzi JP, Fosset G, Romey P, Laduron P, Lazdunski M. Neuroleptics of the diphenylbutylpiperidine series are potent calcium channel inhibitors. Proc Natl Acad Sei USA 1986; 83:7513–7517.

    CAS  Google Scholar 

  110. Murphy TH, Worley PF, Baraban JM. L-type voltage-sensitive calcium channels mediate synaptic activation of immediate early genes. Neuron 1991; 7:625–635.

    PubMed  CAS  Google Scholar 

  111. Finch CE, Morgan DG. RNA and protein metabolism in the aging brain. Annu Rev Neurosci 1990; 13:75–88.

    PubMed  CAS  Google Scholar 

  112. Cole AJ, Saffen DW, Baraban JM, Worley PF. Rapid increase of an immediate early gene meassenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature 1989; 340:474–476.

    PubMed  CAS  Google Scholar 

  113. Wisden W, Errington ML, Williams S, Dunnett C, Hitchcock D, Evan G, Bliss TVP, Hunt SP. Differential expression of immediate early genes in the hippocampus and spinal cord. Neuron 1990; 4:603–614.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Battaini, F., Govoni, S., Magnoni, M.S., Trabucchi, M. (1994). Calcium Ion Homeostasis in the Aging Brain: Regulation of Voltage-Dependent Calcium Channels. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics