Skip to main content

Ion Transport in Vascular Smooth Muscle and the Pathogenesis of Hypertension

  • Chapter
Ion Channels and Ion Pumps

Part of the book series: Endocrinology and Metabolism ((EAM,volume 6))

  • 111 Accesses

Abstract

Over the last 10–15 years a number of reports have documented that hypertension is associated with changes in a variety of ion transport systems, although it has been difficult to define the significance of these changes. One of the reasons for this difficulty is that in human essential hypertension evidence for changes in the ion transport over cell membranes stems from observations in blood cells. If these abnormalities are to play a pathogenetic role they should, however, be present in vascular smooth muscle cells (VSMC), neurons, or the kidney from patients with essential hypertension as well. Confirmation of this by direct measurements has been difficult for technical and ethical reasons. Information concerning ion transport abnormalities in VSMC in hypertension has, however, been obtained from experiments with different types of experimental hypertension, although the extent to which this information is relevant in essential hypertension is open for discussion. With respect to the animals (mainly rats) with genetic forms of hypertension the choice of normotensive controls is a problem (see below), while in the case of secondary forms of experimental hypertension a major problem is the lack of genetic predisposition, which is an important aspect of essential hypertension. Another difficulty is the poor understanding of the physiologic importance of the various ion transport systems in VSMC. Hence the pathogenetic significance of any abnormality is difficult to predict.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Folkow B. Physiological aspects of primary hypertension. Physiol Rev 1982; 62:347–504.

    PubMed  CAS  Google Scholar 

  2. Jones AW. Content and fluxes of electrolytes. In: Bohr DF, Somlyo AP, Sparks HV, eds. Handbook of Physiology. The Cardiovascular System: Vascular Smooth Muscle. Washington, DC: Am Physiol Soc; 1980:253–299.

    Google Scholar 

  3. Wei J-W, Janis RA, Daniel EE. Isolation and characterization of plasma membrane from rat mesenteric arteries. Blood Vessels 1976; 13:279–292.

    PubMed  CAS  Google Scholar 

  4. Hermsmeyer K. Electrogenic ion pumps and other determinants of membrane potential in vascular muscle. Physiologist 1982; 25(6):454–465.

    PubMed  CAS  Google Scholar 

  5. Aalkjæ C, Mulvany MJ. Effect of ouabain on tone, membrane potential and sodium efflux compared with [3H]ouabain binding in rat resistance vessels. J Physiol (Lond) 1985; 362:215–231.

    Google Scholar 

  6. Aalkjær C, Mulvany MJ. Ouabain insensitive extrusion in resistance vessels. In: Bevan JA, Majewski R, Maxwell RA, Story DF, eds. Vascular Neuroeffector Mechanisms. Washington, DC: IRL; 1988:201–208 (ICSU Symp Ser).

    Google Scholar 

  7. Overbeck HW, Derifield RS, Ramnani MB, Sözen T. Attenuated vasodilator responses in K+ in essential hypertensive men. J Clin Invest 1974; 53:678–686.

    Article  PubMed  CAS  Google Scholar 

  8. DeWardener HE, MacGregor GA. Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: Its possible role in essential hypertension. Kid Inter 1980; 18:1–9.

    Article  CAS  Google Scholar 

  9. Blaustein MP, Hamlyn JM. Role of a natriuretic factor in essential hypertension: A hypothesis. Ann Int Med 1983; 98(2):785–792.

    PubMed  CAS  Google Scholar 

  10. Hamlyn JM, Blaustein MP, Bova S, DuCharme DW, Harris DW, Mandel F, Mathews WR, Ludens JH. Identification and characterization of a ouabain-like compound from human plasma. Proc Natl Acad Sei USA 1991; 88:6259–6263.

    Article  CAS  Google Scholar 

  11. Welcome to ouabain—A new steroid hormone. Lancet 1991; 338:543–544. Editorial.

    Google Scholar 

  12. Aalkjæ C, Kjeldsen K, NØrgaard A, Clausen T, Mulvany MJ. Ouabain binding and Na+ content in resistance vessels and skeletal muscles of spontaneously hypertensive rats and K+-depleted rats. Hypertension 1985; 7:277–286.

    Google Scholar 

  13. Kjeldsen K, NØrgaard A. The 3H-ouabain binding capacity of skeletal muscle from spontaneously hypertensive rats show marginal changes in comparison to the major effects of differentiation, K-depletion and thyroid status. Scand J Clin Lab Invest 1986; 46(suppl 180):72–81.

    CAS  Google Scholar 

  14. Schmidt TA, Holm-Nielsen P, Kjeldsen K. No upregulation of digitalis glycoside receptor (Na, K-ATPase) concentration in human heart left ventricle samples obtained at necropsy after long term digitalisation. Cardiovasc Res 1991; 25:684–691.

    Article  PubMed  CAS  Google Scholar 

  15. Rasmussen HH, Okita GT, Hartz RS, Eik RET. Inhibition of electrogenic Na-pumping in isolated atrial tissue from patients treated with digoxin. J Pharmacol Exp Ther 1990; 252:60–64.

    PubMed  CAS  Google Scholar 

  16. NØrgaard A, Kjeldsen K, Clausen T. Potassium depletion decreases the number of 3H-ouabain binding sites and the active Na-K-transport in skeletal muscles. Nature 1981; 293:739–741.

    Article  PubMed  Google Scholar 

  17. NØrgaard A, Kjeldsen K, Hansen O. K+-dependent 3-O-methylfluorescein phosphatase activity in crude homogenate of rodent heart ventricle: Effect of K+ depletion and change in thyroid status. Eur J Pharmacol 1985; 113:373–382.

    Article  PubMed  Google Scholar 

  18. Mulvany MJ, Aalkjæ C, Nilsson H, Korsgaard N, Petersen TT. Raised intracellular sodium consequent to sodium-potassium-dependent ATPase inhibition does not cause myogenic contractions of 150-um arteries from rat and guinea pig. Clin Sei 1982; 63:45–48.

    CAS  Google Scholar 

  19. Woolfson RG, Hillerton PJ, Poston L. Effects of ouabain and low sodium on contractility in human resistance arteries. Hypertension 1990; 15:583–590.

    PubMed  CAS  Google Scholar 

  20. Karaki H, Ozaki H, Urakawa N. Effects of ouabain and potassium-free solution on the contraction of isolated blood vessels. Eur J Pharmacol 1978; 48:439–443.

    Article  PubMed  CAS  Google Scholar 

  21. Blaustein MP. Sodium ions, calcium ions, blood pressure regulation, and hypertension: A reassessment and a hypothesis. Am J Physiol 1977; 232.-C165–C173.

    PubMed  CAS  Google Scholar 

  22. Mulvany MJ, Aalkjæ C, Petersen TT. Intracellular sodium, membrane potential, and contractility of rat mesenteric small arteries. Circ Res 1984; 54:740–749.

    PubMed  CAS  Google Scholar 

  23. Nelson MT, Standen NB, Brayden JE, Worley JF III. Noradrenaline contracts arteries by activating voltage-dependent calcium channels. Nature 1988; 336:382–385.

    Article  PubMed  CAS  Google Scholar 

  24. Blaustein MP. Sodium/calcium exchange and the control of contractility in cardiac muscle and vascular smooth muscle. J Cardiovasc Pharmacol 1988; 12(5):56–68.

    Google Scholar 

  25. Akera T. Effects of cardiac glycosides on Na+, K+-ATPase. In: Greeff K, ed. Handbook of Experimental Pharmacology. Berlin: Springer-Verlag; 1981:287–336.

    Google Scholar 

  26. Ozaki H, Urakawa N. Involvement of a Na-Ca exchange mechanism in contraction induced by low-Na solution in isolated guinea-pig aorta. Pfluegers Arch 1981; 390:107–112.

    Article  CAS  Google Scholar 

  27. Goldman WF, Blaustein MP. Stimulation-induced regional alteration of Ca2+ levels in single arterial smooth muscle cells. J Cardiovasc Pharmacol 1988; 12(5):13–19.

    Google Scholar 

  28. Cauvin C. The effects of Na+ replacement on 45Ca fluxes in isolated rat mesenteric resistance vessels. In: Halpern W, Pegram B, Brayden J, Mackey K, McLaughlin M, Osol G, eds. Resistance Arteries. Ithaca, NY: Perinatology Press; 1988:195–211.

    Google Scholar 

  29. Aalkjæ C. Some aspects of sodium metabolism in arterial resistance vessels: A Review. Aarthus, Denmark: Aarhus University; 1988. Thesis.

    Google Scholar 

  30. Mulvany MJ. Changes in sodium pump activity and vascular contraction. J Hypertension 1985; 3:429–436.

    Article  CAS  Google Scholar 

  31. Mulvany MJ, Aalkjæ C, Jensen PE. Sodium, calcium-exchange in vascular smooth muscle. Ann NY Acad Sei 1991; 639:498–504.

    Article  CAS  Google Scholar 

  32. Petersen TT, Mulvany MJ. Effect of sodium gradient on the rate of relaxation of rat mesenteric small arteries from potassium contractures. Blood Vessels 1984; 21:279–289.

    PubMed  CAS  Google Scholar 

  33. Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 1989; 69:315–382.

    PubMed  CAS  Google Scholar 

  34. Kreye VAW, Bauer PK, Villhauer I. Evidence for furosemide-sensitive active chloride transport in vascular smooth muscle. Eur J Pharmacol 1981; 73(l):91–95.

    Article  PubMed  CAS  Google Scholar 

  35. Deth RC, Payne RA, Peecher DM. Influence of furosemide on rubidium-86 uptake and alpha-adrenergic responsiveness of arterial smooth muscle. Blood Vessels 1987; 24:321–333.

    PubMed  CAS  Google Scholar 

  36. Tian R, Aalkjæ C, Andreasen F. Mechanisms behind the relaxing effect of furosemide on the isolated rabbit ear artery. Pharmacol Toxicol 1991; 68:406–410.

    Google Scholar 

  37. Andreasen F, Christensen JH. The effect of furosemide on vascular smooth muscle is influenced by plasma protein. Pharmacol Toxicol 1988; 63:324–326.

    Article  PubMed  CAS  Google Scholar 

  38. Aalkjæ C, Cragoe EJ Jr. Intracellular pH regulation in resting and contracting segments of rat mesenteric resistance vessels. J Physiol (Lond) 1988; 402:391–410.

    Google Scholar 

  39. Izzard AS, Heagerty AM. The measurement of internal pH in resistance arterioles: Evidence that intracellular pH is more alkaline in SHR than WKY animals. J Hypertension 1989; 7:173–180.

    CAS  Google Scholar 

  40. Little PJ, Cragoe EJ, Bobik A. Na-H exchange is a major pathway for Na influx in rat vascular smooth muscle. Am J Physiol 1986; 251:C707–C712.

    PubMed  CAS  Google Scholar 

  41. Weissberg PL, Little PJ, Cragoe EJ, Bonik A. Na-H antiport in cultured rat aortic smooth muscle: Its role in cytoplasmic pH regulation. Am J Physiol 1987; 253:C193–C198.

    PubMed  CAS  Google Scholar 

  42. Izzard AS, Heagerty AM. Resting intracellular Ph in mesenteric resistance arteries from spontaneously hypertensive and Wistar-Kyoto rats: Effects of amiloride and 4,41-diisothiocyanatostilbene-2,21-disulphonic acid. J Hypertension 1989; 7(6):S128–S129.

    CAS  Google Scholar 

  43. Aickin CC. Mechanisms involved in control of intracellular pH in smooth muscle. V. Symposium: Intracellular pH. Verh Dtsch Zool Ges 1989; 82:121–129.

    Google Scholar 

  44. Aalkjæ C, Hughes A. Chloride and bicarbonate transport in rat resistance arteries. J Physiol 1991; 436:57–73.

    Google Scholar 

  45. Putnam RW. pH regulatory transport systems in a smooth muscle-like cell line. Am J Physiol 1990; 258:C470–C479.

    PubMed  CAS  Google Scholar 

  46. Jentsch TJ, Korbmacher C, Janicke I, Fischer DG, Stahl F, Heibig H, Hollwede H, Cragoe EJ Jr, Keller SK, Wiederholt M. Regulation of cytoplasmic pH of cultured bovine corneal endothelial cells in the absence and presence of bicarbonate. J Membr Biol 1988; 103:29–40.

    Article  PubMed  CAS  Google Scholar 

  47. Boron WF, Boulpaep EL. Intracellular pH regulation in the renal proximal tubule of the salamander. J Gen Physiol 1983; 81:29–52.

    Article  PubMed  CAS  Google Scholar 

  48. Korbmacher C, Heibig H, Stahl F, Wiederholt M. Evidence for Na/H exchange and CI/HCO3 exchange in A10 vascular smooth muscle cells. Pfluegers Arch 1988; 412:29–36.

    CAS  Google Scholar 

  49. Vigne P, Breittmayer J-P, Freiin C, Lazdunski M. Dual control of the intracellular pH in aortic smooth muscle cells by a cAMP-sensitive HCO3/ antiporter and a protein kinase C-sensitive Na+/H+ antiporter. J Biol Chem 1988; 263:18023–18029.

    PubMed  CAS  Google Scholar 

  50. Moolenaar WH, Yarden Y, De Laat SW, Schlessinger J. Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts. J Biol Chem 1982; 257:8502–8506.

    PubMed  CAS  Google Scholar 

  51. Ganz MB, Boyarsky G, Sterzei RB, Boron WF. Arginine vasopressin enhances pH regulation in the presence of HC03 by stimulating three acid-base transport systems. Nature 1989; 337:648–651.

    Article  PubMed  CAS  Google Scholar 

  52. Thomas RC. Cell growth factors, bicarbonate and pH, response. Nature 1989; 337:601.

    Article  PubMed  CAS  Google Scholar 

  53. Aalkjæ C, Mulvany MJ. Steady-state effects of arginine vasopressin on force and pHj of isolated mesenteric resistance arteries from rats. Am J Physiol 1991; 261:0010–0017.

    Google Scholar 

  54. Aickin CC, Brading AF. Measurement of intracellular chloride in guinea-pig vas deferens by ion analysis, 36chloride efflux and micro-electrodes. J Physiol 1982; 326:139–154.

    PubMed  CAS  Google Scholar 

  55. Morgan JP, Morgan KG. Stimulus-specific patterns of intracellular calcium levels in smooth muscle of ferret portal vein. J Physiol 1984; 351:155–167.

    PubMed  CAS  Google Scholar 

  56. Himpens B, Matthijs G, Somlyo AV, Butler TM, Somlyo AP. Cytoplasmic free calcium, myosin light chain phosphorylation, and force in phasic and tonic smooth muscle. J Gen Physiol 1988; 92:713–729.

    Article  PubMed  CAS  Google Scholar 

  57. Ruzycky AL, Morgan KG. Involvement of the protein kinase C system in calcium-force relationship in ferret aorta. Br J Pharmacol 1989; 97:391–400.

    PubMed  CAS  Google Scholar 

  58. Nishimura J, Khalil RA, Drenth JP, van Breemen C. Evidence for increased myofilament Ca2+ sensitivity in norepinephrine-activated vascular smooth muscle. Am J Physiol 1990; 259:H2–H8.

    PubMed  CAS  Google Scholar 

  59. Jensen PE, Mulvany MJ, Aalkjæ C. Free cytosolic calcium measured with fura-2, and the tension-[Ca2+]i relationship in rat mesenteric small arteries. Pfluegers Arch (in press).

    Google Scholar 

  60. Bolton TB. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 1979; 59:606–718.

    PubMed  CAS  Google Scholar 

  61. Aronson P, Vanbreemen C. Effects of sodium gradient manipulation upon cellular calcium, 45Ca fluxes and cellular sodium in the guinea-pig taenia coli. J Physiol (Lond) 1981; 443–461.

    Google Scholar 

  62. Nyborg NCB, Mulvany MJ. Effect of felodipine, a new dihydropyridine vasodilator on contractile responses to potassium, noradrenaline, and calcium in mesenteric resistance vessels of the rat. J Cardiovasc Pharmacol 1984; 6:499–505.

    Article  PubMed  CAS  Google Scholar 

  63. Rüegg UT, Wallnöfer A, Weir S, Cauvin C. Receptor-operated calcium permeable channels in vascular smooth muscle. J Cardiovasc Pharmacol 1989; 14(6):49–58.

    Google Scholar 

  64. Mulvany MJ, Nilsson H, Flatman JA. Role of membrane potential in the response of rat mesenteric arteries to exogenous noradrenaline stimulation. J Physiol (Lond) 1982; 332:363–373.

    CAS  Google Scholar 

  65. Casteels R, Kitamura K, Kuriyama H, Suzuki H. The membrane properties of the smooth muscle cells of the rabbit main pulmonary artery. J Physiol (Lond) 1977; 271:41–61.

    CAS  Google Scholar 

  66. Benham CD, Tsien RW. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 1987; 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  67. Amédée T, Benham CD, Bolton TB, Byrne NG, Large WA. Potassium, chloride and nonselective cation conductances opened by noradrenaline in rabbit ear artery cells. J Physiol 1990; 423:551–568.

    PubMed  Google Scholar 

  68. Nelson MT, Patlak JB, Worley JF, Standen NB. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259:C3–C18.

    PubMed  CAS  Google Scholar 

  69. Benham CD. ATP-activated channels gate calcium entry in single smooth muscle cells dissociated from rabbit ear artery. J Physiol 1989; 419:689–701.

    PubMed  CAS  Google Scholar 

  70. Kwan C-Y, Daniel EE. Calcium handling by membranes isolated from vascular smooth muscle in hypertension. In: Aoki K, Fröhlich ED, eds. Calcium in Essential Hypertension. Japan: Academic Press; 1989:201–230.

    Google Scholar 

  71. Hirst GDS, Edwards FR. Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 1989; 69:546–604.

    PubMed  CAS  Google Scholar 

  72. Bolton TB, Beech DJ, Komori S, Prestwich SA. Voltage- and receptor gated channels. Prog Clin Biol Res 1990; 327:229–243.

    PubMed  CAS  Google Scholar 

  73. Hamilton TC, Weir SW, Weston AH. Comparison of the effects of BRL 34915 and verapamil on electrical and mechanical activity in rat portal vein. Br J Pharmacol 1986; 88:103–111.

    PubMed  CAS  Google Scholar 

  74. Videbaek LM, Aalkjæ C, Mulvany MJ. Pinacidil opens K+-selective channels causing hyperpolarization and relaxation of noradrenaline contractions in rat mesenteric resistance vessels. Br J Pharmacol 1988; 95:103–108.

    PubMed  CAS  Google Scholar 

  75. Quast U, Cook NS. Moving together: K+ channel openers and ATP-sensitive K+ channels. TIPS 1989; 10:431–435.

    PubMed  CAS  Google Scholar 

  76. Daut J, Maier-Rudolph W, Backerath N, Mehrke G, Günther K, Goedel-Meinen L. Hypoxic dilatation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990; 247:1341–1344.

    Article  PubMed  CAS  Google Scholar 

  77. Nelson MT, Huang Y, Brayden JE, Hescheler JK, Standen NB. Arterial dilations in response to calcitonin gene-related peptide involve activation of K+ channels. Nature 1990; 344:770–773.

    Article  PubMed  CAS  Google Scholar 

  78. Amédée T, Large WA, Wang Q. Characteristics of chloride currents activated by noradrenaline in rabbit ear artery cells. J Physiol 1990; 428:501–516.

    PubMed  Google Scholar 

  79. Amédée T, Large WA. Microelectrode study on the ionic mechanisms which contribute to the noradrenaline-induced depolarization in isolated cells of the rabbit portal vein. Br J Pharmacol 1989; 97:1331–1337.

    PubMed  Google Scholar 

  80. Iijima K, Lin L, Nasjletti A, Goligorsky S. Intracellular ramification of endothelin signal. Am J Physiol 1991; 260:C982–C992.

    PubMed  CAS  Google Scholar 

  81. Klockner U, Isenberg G. Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca-activated chloride current. Pfluegers Arch 1991; 418(1–2):168–175.

    CAS  Google Scholar 

  82. Benham CD, Tsien RW. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle. Nature 1987; 328:275–278.

    Article  PubMed  CAS  Google Scholar 

  83. Benham CD, Bolton TB, Byrne NG, Large WA. Action of externally applied adenosine triphosphate on single smooth muscle cells dispersed from rabbit ear artery. J Physiol (Lond) 1987; 387:473–488.

    CAS  Google Scholar 

  84. Sivertsson R. The hemodynamic importance of structural vascular changes in essential hypertension. Acta Physiol Scand 1970; 343(suppl):l–56.

    Google Scholar 

  85. Folkow B, Grimby G, Thulesius O. Adaptive structural changes of the vascular walls in hypertension and their relation to the control of the peripheral resistance. Acta Physiol Scand 1958; 44:255–272.

    Article  PubMed  CAS  Google Scholar 

  86. Folkow B, Gurevich M, Hallbäck M, Lundgren Y, Weiss L. The hemodynamic consequences of regional hypertension in spontaneously hypertensive and normotensive rats. Acta Physiol Scand 1971; 100: 270–272.

    Article  Google Scholar 

  87. Short DS, Thomson AD. The arteries of the small intestine in systemic hypertension. J Pathol 1959; 78:311–334.

    Article  Google Scholar 

  88. Hartper RN, Moore MA, Marr MC, Watts LE, Hutchins PM. Arteriolar rarefaction in conjunctiva of human essential hypertensives. Microvasc Res 1978; 16:369–372.

    Article  Google Scholar 

  89. Hutchins PM, Darnell AE. Observation of a decreased number of small arterioles in spontaneously hypertensive rats. Circ Res 1974; 34–35:1–161.

    Google Scholar 

  90. Heinrich H, Hertel R, Assmann R. Structural differences in the mesentery microcirculation between normotensive and spontaneously hypertensive rats. Pfluegers Arch 1978; 375:153–159.

    Article  Google Scholar 

  91. Sullivan JM, Prewitt RL, Josephs JA. Attenuation of the microcirculation in young patients with high-output borderline hypertension. Hypertension 1983; 5:844–851.

    PubMed  CAS  Google Scholar 

  92. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW Jr. Microvascular rarefaction and tissue vascular resistance in hypertension. Am J Physiol 1989; 256:H126–H131.

    PubMed  CAS  Google Scholar 

  93. Foà PP, Foà NL, Pett MM. Arteriolar lesions in hypertension: A study of 350 consecutive cases treated surgically. An estimation of the prognostic value of muscle biopsy. J Clim Invest 1943; 22:727–742.

    Article  Google Scholar 

  94. Short D. Morphology of the intestinal arterioles in chronic human hypertension. Br Heart J 1966; 28:184–192.

    Article  PubMed  CAS  Google Scholar 

  95. Furuyama M. Histometrical investigations of arteries in reference to arterial hypertention. Tohoku J Exp Med 1962; 76:388–414.

    Article  PubMed  CAS  Google Scholar 

  96. Aalkjæ C, Heagerty AM, Petersen KK, Swales JD, Mulvany MJ. Evidence for increased media thickness, increased neuronal amine uptake, and depressed excitation-contraction coupling in isolated resistance vessels from essential hypertensives. Circ Res 1987; 66:181–186.

    Google Scholar 

  97. Baumbach GL, Heistad DD. Remodeling of cerebral arterioles in chronic hypertension. Hypertension 1989; 13:968–972.

    PubMed  CAS  Google Scholar 

  98. Baumbach GL, Heistad DD. Adaptive changes in cerebral blood vessels during chronic hypertension. J Hypertension 1991; 9:987–991.

    Article  CAS  Google Scholar 

  99. Barrett AM. Arterial measurements in the interpretation of cardiomegaly at necropsy: Cardiac hypertrophy and myocardial infarction. J Pathol Bact 1963; 86:9–20.

    Article  CAS  Google Scholar 

  100. Whall CW, Myers MM, Halpern W. Norepinephrine sensitivity, tension development and neuronal uptake in resistance arteries from spontaneously hypertensive and normotensive rats. Blood Vessels 1980; 17:1–15.

    PubMed  CAS  Google Scholar 

  101. Mulvany MJ, Hansen PK, Aalkjæ C. Direct evidence that the greater contractility of resistance vessels in spntaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers. Circ Res 1978; 43:854–864.

    PubMed  CAS  Google Scholar 

  102. Mulvany MJ, Nyborg NCB. An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats. Br J Pharmacol 1980; 71:585–596.

    PubMed  CAS  Google Scholar 

  103. Dominiczak AF, Bohr DF. Cell membrane abnormalities and the regulation of intracellular calcium concentration in hypertension. Clin Sei 1990; 79:415–423.

    CAS  Google Scholar 

  104. Jones AW. Altered ion transport in vascular smooth muscle from spontaneously hypertensive rats, influences of aldosterone, norepinephrine, and angiotensin. Circ Res 1973; 33:563–572.

    PubMed  CAS  Google Scholar 

  105. Jones AW. Reactivity of ion fluxes in rat aorta during hypertension and circulatory control. Fed Proc 1974; 33:133–137.

    PubMed  CAS  Google Scholar 

  106. Jones AW. Altered ion transport in large and small arteries from spontaneously hypertensive rats and the influence of calcium. Circ Res 1974; 34(1):117–122.

    CAS  Google Scholar 

  107. Jones AW, Miller LA. Ion transport in tonic and phasic vascular smooth muscle and changes during deoxycorticosterone hypertension. Blood Vessels 1978; 15:83–92.

    PubMed  CAS  Google Scholar 

  108. Jones AW. Kinetics of active sodium transport on aortas from control and deoxycorticosterone hypertensive rats. Hypertension 1981; 3:631–640.

    PubMed  CAS  Google Scholar 

  109. Friedman SM, Friedman CL. Cell permeability, sodium transport, and the hypertensive process in the rat. Circ Res 1976; 39:433–441.

    PubMed  CAS  Google Scholar 

  110. Friedman SM. Evidence for enhanced sodium transport in the tail artery of the spontaneously hypertensive rat. Hypertension 1979; 1:572–582.

    PubMed  CAS  Google Scholar 

  111. Friedman SM. Cellular ionic perturbations in hypertension. J Hypertension 1983; 1:109–114.

    Article  CAS  Google Scholar 

  112. Izzard AS, Cragoe EJ Jr, Heagerty AM. Intracellular pH in human resistance arteries in essential hypertension. Hypertension 1991; 17:780–786.

    PubMed  CAS  Google Scholar 

  113. Cauvin C, Johns A, Yamamoto M-K, Hwang O, Gelband C, van Breemen C. Ca2+ movements in vascular smooth muscle and their alterations in hypertension. In: Kwan C-Y, ed. Membrane Abnormalities in Hypertension. Florida: CRC Press; 1989:146–179.

    Google Scholar 

  114. Rusch NJ, Hermsmeyer K. Calcium currents are altered in the vascular muscle cell membrane of spontaneously hypertensive rats. Circ Res 1988; 63:997–1002.

    PubMed  CAS  Google Scholar 

  115. Postnov YV, Orlov SN. Ion transport across plasma membrane in primary hypertension. Physiol Rev 1985; 65(4):904–945.

    PubMed  CAS  Google Scholar 

  116. Heagerty AM, Riozzi A, Brand SC, Bing RF, Thurston H, Swales JD. Membrane transport of ions in hypertension: A review. Scand J Clin Lab Invest 1986; 46(180):54–64.

    CAS  Google Scholar 

  117. Doyle AE, Black H. Reactivity to pressor agents in hypertension. Circ Res 1955; 12:974–980.

    CAS  Google Scholar 

  118. Egan B, Schork N, Panis R, Hinderliter A. Vascular structure enhances regional resistance responses in mild essential hypertension. J Hypertension 1988; 6:41–48.

    Article  CAS  Google Scholar 

  119. Robinson BF, Dobbs RJ, Bayley S. Response of forearm resistance vessels to verapamil and sodium nitropruside in normotensive and hypertensive men: Evidence for a functional abnormality of vascular smooth muscle in primary hypertension. Clin Sei 1982; 63:33–42.

    CAS  Google Scholar 

  120. Ng LL, Harker M, Abel ED. Mechanisms of leucocyte sodium influx in essential hypertension. Clin Sei 1988; 75:521–526.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Aaljæ, C., Kjeldsen, K. (1994). Ion Transport in Vascular Smooth Muscle and the Pathogenesis of Hypertension. In: Foà, P.P., Walsh, M.F. (eds) Ion Channels and Ion Pumps. Endocrinology and Metabolism, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2596-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2596-6_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7599-2

  • Online ISBN: 978-1-4612-2596-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics