Skip to main content

A Bayesian Model for Organ Blood Flow Measurement with Colored Microspheres

  • Conference paper
Case Studies in Bayesian Statistics, Volume II

Part of the book series: Lecture Notes in Statistics ((LNS,volume 105))

  • 357 Accesses

Summary

The development of quantitative methods to measure organ blood flow is an active area of research in physiology. Under current protocols radiolabeled microspheres are injected into the circulation of an experimental animal and blood flow to an organ is estimated based on uptake of radioactivity. Growing concerns about environmental pollution, laboratory exposure to radioactivity and the increasing costs of radioactive waste disposal have lead to the development of microspheres labeled with non-radioactive colored markers. Because colored microspheres are new, little research has been devoted to developing statistical methods appropriate for the analysis of data collected from their use. In this paper we present a Bayesian approach to the problem of organ blood flow measurement with colored microspheres. We derive a Poisson-multinomial probability model to describe the organ blood flow protocol. The physical and biological information available to an investigator before an experiment is summarized in a prior probability density which we represent as a product of Dirichlet and log-normal probability densities. We derive the marginal probability density for the flow of blood to an organ conditional on the number of microspheres observed in the counting phase of the experiment. We apply a Monte Carlo Markov chain algorithm to compute the density. The Bayesian approach is used to estimate kidney, heart and total organ blood flow in a colored microsphere study performed in a male New Zealand white rabbit. The results from a Bayesian analysis are compared to those obtained from applying an approximate maximum likelihood procedure based on the delta method. The relation to current methods for organ blood flow estimation is described and directions of future research are detailed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, J.J.H., Ewy, C.S. and Kim, S. (1987). Deuterium magnetic resonance in vivo: The measurement of blood flow and tissue perfusion. Annal New York Academy of Sciences 508, 89–98.

    Article  Google Scholar 

  • Alper, J. (1993). EEG + MRI: a sum greater than the parts. Science 261, 559.

    Article  Google Scholar 

  • Austin, R.E., Hauck, W.W., Aldea, G.S., Flynn, A.E., Coggins, D.L. and Hoffman, J.I.E. (1989). Quantitating error in blood-flow measurements with radioactive microspheres. American Journal of Physiology 257, H280–H288.

    Google Scholar 

  • Baer, R.W., Payne, B.D., Verrier, E.D., Vlahakes, G J., Moiodowitch, D., Uhlig, P.N. and Hoffman, J.I.E. (1984). Increased number of myocardial blood flow measurements with radionuclide-labelled microspheres. American Journal of Physiology 246, H418–H434.

    Google Scholar 

  • Bashein, G. ed., Cardiac Output Measurement with the Pulmonary Artery Catheter, (Philadelphia: J. B. Lipincott, 1991) 19, 1–14.

    Google Scholar 

  • Bassingthwaighte, J.B., Malone, M.A., Moffett, T.C., King, R.B., Little, S.E., Link, J.M. and Krohn, K.A. (1987). Validity of microsphere deposition for regional myocardial flows. American Journal of Physiology 253, HI 84–H193.

    Google Scholar 

  • Boyd, 0. (1993). A randomized clinical trial of the effect of deliberate preoperative increase of oxygen delivery on mortality in high risk surgical patients. Journal of the American Medical Association 270, 2699–2707.

    Article  Google Scholar 

  • Brown, M.D. and Hudlicks, O. (1991). Capillary supply and cardiac performance in the rabbit after chronic dobutamine treatment. Cardiovascular Research 25, 909–915.

    Article  Google Scholar 

  • Brown, E.N. and Sapirstein, A. (1992). A Bayesian model for organ blood flow measurement with radiolabeled microspheres. Technical Report 92–02, Statistics Research Laboratory, Department of Anesthesia, Massachusetts General Hospital.

    Google Scholar 

  • Buckberg, G.D., Luck, J.C., Payne, D.B., Hoffman, J.I.E., Archie, J.P. and Fixler, D.E. (1971). Some sources of error in measuring regional blood flow with radioactive microspheres. Journal of Applied Physiology 31 (4), 598–604.

    Google Scholar 

  • Clifford, P. (1993). Discussion on the meeting on the Gibbs sampler and other Markov chain Monte Carlo methods. Journal of the Royal Statistical Society Series B 55, 53–102.

    Google Scholar 

  • Corbally, M.T. and Brennan, M.F. (1990). noninvasive measurement of regional blood flow in man. The American Journal of Surgery 160, 313–321.

    Article  Google Scholar 

  • Crease, R.P. (1993). Biomedicine in the age of imaging. Science 261, 554, 557–8, 561.

    Article  Google Scholar 

  • Dole, W.R, Jackson, D.L., Rosenblatt, J.L and Thompson, W.L. (1982). Relative error and variability in blood flow measurements with radiolabeled microspheres. American Journal of Physiology 243, H372–H378.

    Google Scholar 

  • Gilks, W.R., Clayton, D.G., Spiegelhalter, D.J., Best, N.G., McNeil, A.J., Sharpies, L.D. and Kirby, A.J. (1993). Modeling complexity: applications of Gibbs sampling in medicine. Journal of the Royal Statistical Society Series B 55, 39–52.

    MATH  Google Scholar 

  • Giudicelli, J.F, Berdeaux, A., Richer, C. and Thuillez, C. (1922). Use of ultrasonic and microsphere techniques to evaluate regional aspects of vasodilator therapy in myocardial ischaemia, arterial hypertension and heart failure. Journal of Hypertension 10.5, S29–36.

    Article  Google Scholar 

  • Glenny, R.W., Bernard, S. and Brinkley, M. (1993). Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. Journal of Applied Physiology 74.5, 2585–2597.

    Google Scholar 

  • Hale, S., Alker, K.J. and Kloner, R.A. (1988). Evaluation of nonradioactive, colored microspheres for measurement of regional myocardial blood flow in dogs. Circulation 78, 428–434.

    Article  Google Scholar 

  • Hamilton, W.F. Measurement of the cardiac output. Handbook of Physiology Circulation 1, Bethesda, MD:.

    Google Scholar 

  • Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109.

    Article  MATH  Google Scholar 

  • Heyman M.A., Payne B.D., Hoffman J.I.E and Rudolph, A.M. (1977). Blood flow measurements with radionuclide-labeled particles. Progress in Cardiovascular Diseases 20.1, 55–79.

    Article  Google Scholar 

  • Ishise, S., Pegram, B.L., Yamamoto, J., Kitamura, Y. and Frohlich, E.D. (1980). Reference sample microsphere method: cardiac output and blood flows in conscious rat. American Journal of Physiology 239, H443–H449.

    Google Scholar 

  • Johnson, N.L. and Kotz, S. Distributions in Statistics: Continuous Multivariate Distributions (New York: John Wiley & Sons, 1979).

    Google Scholar 

  • Kanno, I., Iida H., Miura S., Murakami, M., Takahashi, K., Sasaki, H., Inugami, A., Shishido, F. and Uemura, K. (1987). A System for cerebral blood flow measurement using an H215O autoradiographic method and positron emission tomography. Journal of Cerebral Blood Flow and Metabolism 7, 143–153.

    Article  Google Scholar 

  • Kim, S. and Ackerman, J.J.H. (1990). Quantification of regional blood flow by monitoring of exogenous tracer via nuclear magnetic resonance spectroscopy. Magnetic Resonance In Medicine 14, 266–282.

    Article  Google Scholar 

  • Klar, E., Rattner, D.W., Compton, C, Stanford, G., Chernow, B. and Warshaw, A.L. (1991). Adverse effect of therapeutic vasoconstrictors in experimental acute pancreatitis. Annals of Surgery 214.2, 168–174.

    Article  Google Scholar 

  • Kowallik, P. Schulz, R., Guth, B.D., Schade, A., Paffhausen, W., Gross, R. and Heusch, G. (1991). Measurement of regional blood flow with multiple colored microspheres. Circulation 83, 974–982.

    Google Scholar 

  • Mimran, A. and Casellas, D. (1979). Microsphere size and determination of intrarenal blood flow distribution in the rat. Pflgers Archiv 382, 233–240.

    Article  Google Scholar 

  • Nose, Y., Nakamura, T. and Nakumura, M. (1985). The microsphere method facilitates statistical assessment of regional blood flow. Basic Research in Cardiology 80, 417–429.

    Article  Google Scholar 

  • Robertson, J.S. (1990). Mathematical treatment of uptake and release of indicator substances in relation to flow analysis in tissues and organs. Handbook of Physiology-Circulation 1 (Bethesda, MD: John Wiley k Sons), 617–644.

    Google Scholar 

  • Rudolph, A.M. and Heymann, M.A. (1967). The circulation of the fetus in utero: Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circulation Research 21, 163–184.

    Google Scholar 

  • Smith, A.F.M. and Roberts, G.O. (1993). Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B 55, 3–23.

    MathSciNet  MATH  Google Scholar 

  • Stein, Paul D. (1972). Velocity and flow measurements by electromagnetic techniques. The American Journal of Cardiology 29, 401–7.

    Article  Google Scholar 

  • Talafih, K., Briden, K.L. and Weiss, H.R. (1983). Thyroxine-induced hypertrophy of the rabbit heart. Circulation Research 52, 272–279.

    Google Scholar 

  • Tuma, R.F., Vasthare, U.S., Irion, G.L. and Wiedeman, M.P. (1986). Considerations in use of microspheres for flow measurements in anesthetized rat. American Journal of Physiology 250, H137–H143.

    Google Scholar 

  • von Ritter, C, Hinder, R.A., Womack, W., Bauerfeind, P., Fimmel, C.J., Kvietys, P.R., Granger, D.N. and Blum, A.L. (1988). Microsphere estimates of blood flow: methodological considerations. American Journal of Physiology 254, G275–G279.

    Google Scholar 

  • Weisberg, L. S., Kurnik, P.B., and Kurnk, B.R.C. (1992) Radiocontrast-induced nephropathy in humans: Role of renal vasoconstriction. Kidney International 41, 1408–1415.

    Article  Google Scholar 

  • Wolf, A., Salto, T., Dudek, R. and Bing, R.J. (1991). The effect of lysophosphatidylcholine on coronary and renal circulation in the rabbit. Lipids 26, 223–226.

    Article  Google Scholar 

  • Yotsumoto, F., Manabe, T., Ohshio, G., Imanishi, K., Ando, K., Kyogoku, T., Hirano, T. and Tobe, T. (1993). Role of pancreatic blood flow and vasoactive substances in the development of canine acute pancreatitis. Journal of Surgical Research 55, 531–36.

    Article  Google Scholar 

  • Efron, B. (1979) Bootstrap methods: another look at the jackknife. Ann. Statist 7, 1–26.

    Article  MathSciNet  MATH  Google Scholar 

  • Efron, B. and Tibshirani, R. (1993). An introduction to the bootstrap. Chapman and Hall, New York, London.

    MATH  Google Scholar 

  • Bassingthwaighte, J. B., Malone, M. A., Moffett, T. C., King, R. B., Little, S. E., Link, J. M., and Krohn, K.A. (1987). Validity of microsphere deposition for regional myocardial flows. American Journal of Physiology, 253, H184–H193.

    Google Scholar 

  • Buckberg, G. D., Luck, J. C., Payne, D. B., Hoffman, J. I. E., Archie, J. P., and Fixler, D. E. (1971). Some sources of error in measuring regional blood flow with radioactive microspheres. Journal of Applied Physiology, 31 (4), 598–604.

    Google Scholar 

  • Kowallik, P., Schulz, R, Guth, B. D., Schade, A., Paffhausen, W., Gross, R., and Heusch, G, (1991). Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation, 83, 974–982.

    Google Scholar 

  • Escobar, M. Personal communication.

    Google Scholar 

  • Heyman, M.A., Payne, B.D., Hoffman, J.I.E. and Rudolph, A.M. (1977). Blood flow measurements with radionuclide-labeled particles. Progress in Cardiovascular Diseases 20.1, 55–79.

    Article  Google Scholar 

  • Ishise, S., Pegram, B.L., Yamamoto, J., Kitamura, Y. and Frohlich, E.D. (1980). Reference sample microsphere method: cardiac output and blood flows in conscious rat. American Journal of Physiology 239, H443–H449.(here).

    Google Scholar 

  • Mimran, A. and Casella, D. (1979). Microsphere size and determination of intrarenal blood flow distribution in the rat. Pflgers Archiv 382, 233–240.

    Article  Google Scholar 

  • Rudolph, A.M. and Heymann, M.A. (1967). The circulation of the fetus in utero: Methods for studying distribution of blood flow, cardiac output and organ blood flow. Circulation Research 21, 163–184.

    Google Scholar 

  • Tuma, R.F., Vasthare, U.S., Iriion, G.L. and Wiedeman, M.P. (1986). Considerations in use of microspheres for flow measurements in anesthetized rat. American Journal of Physiology 250, H137–H143.

    Google Scholar 

  • Von Ritter, C, Hinder, R.A., Womack, W., Bauerfeind, P., Fimmel, C.J., Kvietys, P.R., Granger, D.N. and Blum, A.L. (1988). Microsphere estimates of blood flow: methodological considerations. American Journal of Physiology 254, G275–G279.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Brown, E.N., Sapirstein, A. (1995). A Bayesian Model for Organ Blood Flow Measurement with Colored Microspheres. In: Gatsonis, C., Hodges, J.S., Kass, R.E., Singpurwalla, N.D. (eds) Case Studies in Bayesian Statistics, Volume II. Lecture Notes in Statistics, vol 105. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2546-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2546-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94566-8

  • Online ISBN: 978-1-4612-2546-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics