Skip to main content

Hypothermia, Cardiac Surgery, and Cardiopulmonary Bypass

  • Chapter
Cardiopulmonary Bypass

Abstract

The ability to control a patient’s body temperature within a very wide range is one of the most important therapeutic modalities available to the cardiac surgeon, anesthesiologist, and perfusionist. Hypothermia facilitates coronary arterial bypass surgery, heart valve repair or replacement, and the correction of congenital cardiac defects. Furthermore, precise anatomic correction of complex congenital heart defects, in a bloodless and motionless surgical field, is possible even in tiny premature infants during profoundly hypothermic total circulatory arrest. The technology of deep hypothermia and total circulatory arrest also is useful in operations on the thoracic aorta, the aortic arch, the brachiocephalic vessels, and the brain, during which cerebral or spinal cord blood flow is compromised or interrupted. Therapeutic clinical hypothermia, usually used for support of the patient during operation on or within the heart, requires uniform cooling of the entire body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Taylor CA. Surgical hypothermia. Pharmac Ther 1988; 38: 169–200.

    Article  CAS  Google Scholar 

  2. Reuler JB. Hypothermia: pathophysiology, clinical settings, and management. Ann Intern Med 1978; 89: 519–527.

    PubMed  CAS  Google Scholar 

  3. Virtue RW. Hypothermic Anesthesia. Springfield, Ill: Charles C Thomas; 1955:vii.

    Google Scholar 

  4. Breasted JH. The Edwin Smith Surgical Papyrus. Vol. I. Chicago: University of Chicago Press; 1930.

    Google Scholar 

  5. Swan H. Clinical hypothermia: a lady with a past and some promise for the future. Surgery 1973; 73: 736–758.

    PubMed  CAS  Google Scholar 

  6. Bigelow WG, Lindsay WK, Greenwood WF. Hypothermia—its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 1950; 132: 849–864.

    Article  PubMed  CAS  Google Scholar 

  7. Bigelow WG, Lindsay WK, Harrison RC, et al. Oxygen transport and utilization in dogs at low body temperatures. Am JPhysiol 1950; 160: 125–137.

    CAS  Google Scholar 

  8. Bigelow WG, Callaghan JC, Hopps JA. General hypothermia for experimental intracardiac surgery. Ann Surg 1950; 132: 531–539.

    Article  PubMed  CAS  Google Scholar 

  9. Boerema I, Wildschut A, Schmidt WJH, et al. Experimental researches into hypothermia as an aid in the surgery of the heart. Arch Chirurg Neerl 1951; 3: 25.

    CAS  Google Scholar 

  10. Lewis FS, Taufic M. Closure of atrial septal defects with the aid of hypothermia: experimental accomplishments and the report of one successful case. Surgery 1953; 33: 52.

    PubMed  CAS  Google Scholar 

  11. Swan H, Seavin I, Blount SG, et al. Surgery by direct vision in the open heart during hypothermia. JAMA 1953; 153: 1081.

    CAS  Google Scholar 

  12. Lillehei CW. Controlled cross circulation for direct-vision intracardiac surgery; correction of ventricular septal defects, atrioventricularis communis and tetralogy of Fallot. Post Grad Med 1955; 17: 388–396.

    CAS  Google Scholar 

  13. Warden HE, Cohen M, Read RC, et al. Controlled cross circulation for open intracardiac surgery. J Thorac Surg 1954; 28: 331.

    PubMed  CAS  Google Scholar 

  14. Sealy WC, Brown IW, Young WG. A report on the use of both extracorporeal circulation and hypothermia for open heart surgery. Ann Surg 1958; 147: 603.

    Article  PubMed  CAS  Google Scholar 

  15. Drew CE, Keen G, Benazon BB. Profound hypothermia. Lancet 1959; 1: 745.

    Article  PubMed  CAS  Google Scholar 

  16. Weiss M, Piwnica A, Lenfant C, et al. Deep hypothermia with total circulatory arrest. Trans Am Soc Artif Intern Organs 1960; 6: 227.

    PubMed  CAS  Google Scholar 

  17. Kirklin JW, Dawson B, Devloo RA, et al. Open intracardiac operations: use of circulatory arrest during hypothermia induced by blood cooling. Ann Surg 1961; 154: 769.

    PubMed  CAS  Google Scholar 

  18. Horiuchi T, Koyamada K, Matano I, et al. Radical operation for ventricular septal defect in infancy. J Thorac Cardiovasc Surg 1963; 46: 180.

    PubMed  CAS  Google Scholar 

  19. Hikasa Y, Shirotani H, Satomura K, et al. Open heart surgery in infants with the aid of hypothermic anesthesia. Arch Jpn Chir 1967; 36: 495–508.

    CAS  Google Scholar 

  20. Dillard DH, Mohri H, Hessel EA, et al. Correction of total anomalous pulmonary venous drainage in infants utilizing deep hypothermia with total circulatory arrest. Circulation 1967; 36 (suppl I): 1–105.

    Google Scholar 

  21. Wakusawa R, Shibata S, Sata H, et al. Clinical experience in 525 cases of open-heart surgery under simple profound hypothermia. Jpn JAnesth 1968; 18: 240.

    Google Scholar 

  22. Barratt-Boyes BG, Simpson MM, Neutze JM. Intracardiac surgery in neonates and infants using deep hypothermia. Circulation 1970; 61–62 (suppl III): III - 73.

    Google Scholar 

  23. Hamilton DI, Shackleton J, Rees GJ, et al. Experience with deep hypothermia in infancy using core cooling. In: BarrattBoyes BG, Neutze JM, Harris EA, eds. Heart Disease in Infancy. Baltimore: Williams & Wilkins; 1973: 52.

    Google Scholar 

  24. Barratt-Boyes BG, Simpson M, Neutze JM. Intracardiac surgery in neonates and infants using deep hypothermia. Circulation 1971;43(suppl 1:25; suppl 1: 30 ).

    Google Scholar 

  25. Christakis GT, Weisel RD, Fremes SE, et al. Coronary artery bypass grafting in patients with poor ventricular function. J Thorac Cardiovasc Surg 1992; 103: 1083–1091.

    PubMed  CAS  Google Scholar 

  26. Christakis GT, Koch JP, Deemar KA, et al. A randomized study of the systemic effects of warm heart surgery. Ann Thorac Surg 1992; 54: 449–457.

    Article  PubMed  CAS  Google Scholar 

  27. Systemic Effects of Cardiopulmonary Bypass. New York: Cahners Healthcare Communications; 1993:1–28.

    Google Scholar 

  28. Guyton AC. The cell and its function. In: Textbook of Medical Physiology. 8th ed. Philadelphia: W B Saunders Company, Harcourt Brace Jovanovich Inc; 1991: 9–23.

    Google Scholar 

  29. Guyton AC. Metabolism of carbohydrates and formation of adenosine triphosphate. In: Textbook of Medical Physiology. 8th ed. Philadelphia: W B Saunders Company, Harcourt Brace Jovanovich Inc; 1991: 744–753.

    Google Scholar 

  30. Grout BWW, Morris GJ, eds. The Effects of Low Temperatures on Biological Systems. London: Edward Arnold; 1987.

    Google Scholar 

  31. Michenfelder JD, Theyer RA. Hypothermia: effect on canine brain and whole-body metabolism. Anesthesiology 1968; 29: 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  32. Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism, and function during hypothermia. Anesthesiology 1991; 75: 130–136.

    Article  PubMed  CAS  Google Scholar 

  33. Norwood WI, Norwood CR. Influence of hypothermia on intracellular pH during anoxia. Am J Physiol 1982; 243: C62 - C65.

    PubMed  CAS  Google Scholar 

  34. Berger EC. The Physiology of Adequate Perfusion. St. Louis: C V Mosby Company; 1979.

    Google Scholar 

  35. Abouna GM, Pashley DH, Ginsbury JM, et al. Kidney preservation by hypothermic perfusion with albumin versus plasma and with pulsatile versus non-pulsatile flow. Br J Surg 1974; 61: 555–561.

    Article  PubMed  CAS  Google Scholar 

  36. Abouna GM, Delong TG, Pashley DH, et al. Proceedings: critical evaluation of viability assays in renal preservation. Br J Surg 1974; 61: 325.

    Article  PubMed  CAS  Google Scholar 

  37. Harris EA, Seelye ER, Squire AW. Oxygen consumption during cardiopulmonary bypass with moderate hypothermia in man. Br J Anaesth 1971; 43: 1113–1120.

    Article  PubMed  CAS  Google Scholar 

  38. Evans PJD, Ruygrok P, Seelye ER, et al. Does sodium nitroprusside improve tissue oxygenation during cardiopulmonary bypass? Br J Anaesth 1977; 40: 799–803.

    Article  Google Scholar 

  39. Norwood WI, Norwood CR, Castaneda AR. Cerebral anoxia: effect of deep hypothermia and pH. Surgery 1979; 86: 203–209.

    PubMed  CAS  Google Scholar 

  40. Rangel DM, Stevens GH, Yakeishi Y, et al. Physiologic evaluation of canine lung allografts from cadaver donors. Surgery 1969; 66: 863–870.

    PubMed  CAS  Google Scholar 

  41. Fonkalsrud EW, Rangel DM, Byfield J, et al. Hepatic preservation with chlorpromazine and phenoxygenzamine Surgery 1969; 66: 23–33.

    PubMed  CAS  Google Scholar 

  42. Thaw C, Wittlin SD, Gershengorn MC. Tetracaine, propranolol and trifluoperazine inhibit thyrotropin releasing hormone-induced prolactin secretion from GH3 cells by displacing membrane calcium: further evidence that TRH acts to mobilize cellular calcium. Endocrinology 1982; 111: 2138 2140.

    Google Scholar 

  43. Khuri SF, Michelson AD, Valeri CR. The effect of cardiopulmonary bypass on hemostasis and coagulation. In: Loscalzo J, Schafer AI, eds. Thrombosis and Hemorrhage. Cambridge, Mass: Blackwell; 1993.

    Google Scholar 

  44. Valeri CR, Feingold H, Cassidy G, et al. Hypothermia-induced reversible platelet dysfunction. Ann Surg 1987; 205: 175–181.

    Article  PubMed  CAS  Google Scholar 

  45. Valeri CR, MacGregor H, Pompei F, et al. Acquired abnormalities of platelet function. N Engl J Med 1991; 324: 1670.

    Article  Google Scholar 

  46. Endoh M. Regulation of intracellular Ca2+ transients of myocardial cell. In: Tada M, ed. Molecular Biology of the Myocardium. Tokyo: Japan Scientific Societies Press & CRC Press; 1992: 203–218.

    Google Scholar 

  47. Griepp EB, Griepp RB. Cerebral consequences of hypothermic circulatory arrest in adults. J Cardiac Surg 1992; 7: 134155.

    Google Scholar 

  48. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl JMed 1993; 329: 1057–1064.

    Article  CAS  Google Scholar 

  49. Rebeyka IM, Coles JG, Wilson GJ, et al. The effect of low-flow cardiopulmonary bypass on cerebral function: an experimental and clinical study. Ann Thorac Surg 1987; 43: 391–396.

    Article  PubMed  CAS  Google Scholar 

  50. Swain JA, McDonald TJ Jr, Griffith PK, et al. Low-flow hypothermic cardiopulmonary bypass protects the brain. J Thorac Cardiovasc Surg 1991; 102: 76–83.

    PubMed  CAS  Google Scholar 

  51. Wilson GJ, Rebeyka IM, Coles JG, et al. Loss of the somatosensory evoked response as an indicator of reversible cerebral ischemia during hypothermic, low-flow cardiopulmonary bypass. Ann Thorac Surg 1988; 45: 206–209.

    Article  PubMed  CAS  Google Scholar 

  52. Weir DL, The use of thiopentone and propofol. In: Smith P, Taylor K, eds. Cardiac Surgery and the Brain. London: Edward Arnold; 1993: 245–251.

    Google Scholar 

  53. Siegman MG, Anderson RV, Balaban RS, et al. Barbiturates impair cerebral metabolism during hypothermic circulatory arrest. Ann Thorac Surg 1992; 54: 1131–1136.

    Article  PubMed  CAS  Google Scholar 

  54. Weiss M, Weiss J, Cotton J, et al. A study of the electroencephalogram during surgery with deep hypothermia and circulatory arrest in infants. J Thorac Cardiovasc Surg 1975; 70: 316–329.

    PubMed  CAS  Google Scholar 

  55. Reilly El, Brunberg JA, Doty DB. The effect of deep hypothermia and total circulatory arrest on the electroencephalogram in children. Electroencephalogr Clin Neurophysiol 1974; 36: 661–667.

    Article  PubMed  CAS  Google Scholar 

  56. Kay PH. Low flow and circulatory arrest. In: Kay PH, ed. Techniques in Extracorporeal Circulation. 3rd ed. Oxford: Butterworth-Heinemann Ltd; 1992: 230–235.

    Google Scholar 

  57. Rossi R, van der Linden J, Ekroth R, et al. No flow or low flow? A study of the ischemic marker creatine kinase BB after deep hypothermic procedures. J Thorac Cardiosvasc Surg 1989; 98: 193–199.

    CAS  Google Scholar 

  58. Ekroth R, Thompson RJ, Lincoln C, et al. Elective deep hypothermia with total circulatory arrest: changes in plasma creatine kinase BB, blood glucose, and clinical variables. J Thorac Cardiovasc Surg 1989; 97: 30–35.

    PubMed  CAS  Google Scholar 

  59. Kirklin JK, Kirklin JW. Management of the cardiovascular system after cardiac surgery. Ann Thorac Surg 1981; 32: 31 1319.

    Google Scholar 

  60. Greeley WJ, Ungerleider RM. Assessing the effect of cardiopulmonary bypass on the brain. Ann Thorac Surg 1991; 52: 417–419.

    Article  PubMed  CAS  Google Scholar 

  61. Kirklin JW, Barratt-Boyes BG, Hypothermia, circulatory arrest, and cardiopulmonary bypass. In: Cardiac Surgery. 2nd ed. New York: Churchill Livingstone; 1993: 61–128.

    Google Scholar 

  62. Stupful M, Severinghaus JW. Internal body temperature gradients during anesthesia and hypothermia and effect of vagotomy. J Appl Physiol 1956; 9: 380.

    Google Scholar 

  63. Heidenreich T, Guiffre M, Doorley J. Temperature and temperature measurement after induced hypothermia. Nurs Res 1992; 41: 296–300.

    Article  PubMed  CAS  Google Scholar 

  64. Bone ME, Feneck RO. Bladder temperature as an estimate of body temperature during cardiopulmonary bypass. Anaesthesia 1988; 43: 181–185.

    Article  PubMed  CAS  Google Scholar 

  65. Horrow JC, Rosenberg H. Does urinary catheter temperature reflect core temperature during cardiac surgery? Anesthesiology 1988; 69: 986–989.

    Article  PubMed  CAS  Google Scholar 

  66. Jonas RA. Problems of deep hypothermic circulatory arrest and low-flow perfusion: with particular reference to the paediatric population. In: Smith P, Taylor K, eds. Cardiac Surgery and the Brain. London: Edward Arnold, Hodder & Stoughton; 1993: 95–107.

    Google Scholar 

  67. Stephan H, Weyland A, Kazmaier S, et al. Acid-base management during hypothermic cardiopulmonary bypass does not affect cerebral metabolism but does affect blood flow and neurological outcome. Br J Anaesth 1992; 69: 51–57.

    Article  PubMed  CAS  Google Scholar 

  68. Jonas RA, Bellinger DC, Rappaport LA, et al. Relation of pH strategy and developmental outcome after hypothermic circulatory arrest. J Thorac Cardiovasc Surg 1993; 106: 362–368.

    PubMed  CAS  Google Scholar 

  69. Tan PS. The anaesthetic management of circulatory arrest. Br J Hosp Med 1990; 43: 36–41.

    PubMed  CAS  Google Scholar 

  70. Watanabe T, Orita H, Kobayashi M, et al. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Comparative study of circulatory arrest, nonpulsatile low-flow perfusion, and pulsatile low-flow perfusion [see comments]. J Thorac Cardiovasc Surg 1989; 97: 396–401.

    PubMed  CAS  Google Scholar 

  71. Watanabe T, Miura M, Orita H, et al. Brain tissue pH, oxygen tension, and carbon dioxide tension in profoundly hypothermic cardiopulmonary bypass. Pulsatile assistance for circulatory arrest, low-flow perfusion, and moderate-flow perfusion. J Thorac Cardiovasc Surg 1990; 100: 274–280.

    PubMed  CAS  Google Scholar 

  72. Swain JA. Cardiac surgery and the brain (editorial). N Engl JMed 1993; 329: 1119–1120.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Williams, W.H., Davtyan, H.G., Drazanova, M. (1995). Hypothermia, Cardiac Surgery, and Cardiopulmonary Bypass. In: Mora, C.T., Guyton, R.A., Finlayson, D.C., Rigatti, R.L. (eds) Cardiopulmonary Bypass. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2484-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2484-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7557-2

  • Online ISBN: 978-1-4612-2484-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics