Skip to main content

Complex Billiard Hamiltonian Systems and Nonlinear Waves

  • Chapter
Algebraic Aspects of Integrable Systems

Abstract

The relationships between phase shifts, monodromy effects, and billiard solutions are studied in the context of Riemannian manifolds for both integrable ordinary and partial differential equations. The ideas are illustrated with the three wave interaction, the nonlinear Schrödinger equation, a coupled Dym system and the coupled nonlinear Schrödinger equations.

Research partially supported by NSF grants DMS 9403861 and 9508711.

GGL gratefully acknowledges support from BRIMS, Hewlett-Packard Labs and from NSF DMS under grant 9508711.

Research partially supported by NSF grant DMS 9302992.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz and H. Segur [ 1981 ], Solitons and the Inverse Scattering Transform, SIAM, Philadelphia.

    MATH  Google Scholar 

  2. M.S. Alber and S.J. Alber [ 1986 ], On Hamiltonian formalism for finite- zone solutions of nonlinear integrable equations, Proc. VIII Int. Cong, on Math. Physics, Marseille, France (World Scientific) 447 - 462.

    Google Scholar 

  3. M.S. Alber and S.J. Alber [ 1985 ], Hamiltonian formalism for finite-zone solutions of integrable equations, C.R. Acad. Sc. Paris 301, 777-781.

    MathSciNet  Google Scholar 

  4. M.S. Alber and S. J. Alber [ 1987 ], Hamiltonian formalism for nonlinear Schrödinger equations and sine-Gordon equations, J. London Math. Soc. 36, 176-192.

    Article  MathSciNet  Google Scholar 

  5. M.S. Alber, R. Camassa, D.D. Holm and J.E. Marsden [ 1994 ], The geometry of peaked solitons and billiard solutions of a class of integrable partial differential equation’s, Lett. Math. Phys. 32, 137-151.

    Article  MathSciNet  MATH  Google Scholar 

  6. M.S. Alber, R. Camassa, D.D. Holm and J.E. Marsden [ 1995 ], On the link between umbilic geodesies and soliton solutions of nonlinear partial differential equation’s, Proc. Roy. Soc. Lond. A 450 677-692.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.S. Alber and J.E. Marsden [ 1992 ], On geometric phases for soliton equations, Commun. Math. Phys., 149, 217-240.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.S. Alber and J.E. Marsden [ 1994a ], Geometric phases and monodromy at singularities, N.M. Ercolani et al., eds., NATO A SI Series B ( Plenum Press, New York ) 320 273-296.

    Google Scholar 

  9. M.S. Alber and J.E. Marsden [ 1994b ], Resonant Geometric Phases for Soliton Equations, Fields Institute Commun. 3 1 - 26.

    MathSciNet  Google Scholar 

  10. M. Antonowicz and A.P. Fordy [ 1988 ], Coupled Harry Dym equations with multi-Hamiltonian structures, J. Phys. A 21 L269 - L275.

    Article  MathSciNet  Google Scholar 

  11. M. Antonowicz and A.P. Fordy [ 1989 ], Factorisation of energy dependent Schrödinger operators: Miura maps and modified systems, Commun. Math. Phys. 124 465-486.

    Article  MathSciNet  MATH  Google Scholar 

  12. V.I. Arnold [1989], Mathematical Methods of Classical Mechanics, (Springer-Verlag: New York, Heidelberg, Berlin).

    Google Scholar 

  13. A. Baider, R. C. Churchill and D. L. Rod [ 1990 ], Monodromy and non- integrability in complex Hamiltonian systems, J. Dyn. Diff. Equations 2, 451-481.

    Google Scholar 

  14. L. Bates and M. Zou [ 1993 ], Degeneration of Hamiltonian monodromy cycles, Nonlinearity 6, 313 - 335.

    Article  MathSciNet  MATH  Google Scholar 

  15. Berry, M. and J. Hannay [ 1988 ] Classical non-adiabatic angles, J. Phys. A. Math. Gen. 21, 325-333.

    Article  MathSciNet  Google Scholar 

  16. H. Braden [ 1982 ], A completely integrable mechanical system, Lett. Math. Phys. 6 449-452.

    Article  MathSciNet  MATH  Google Scholar 

  17. P.L. Christiansen, J.C. Eilbeck, V.Z. Enolskii, and N.A. Rostov [ 1995 ], Quasiperiodic solutions of the coupled nonlinear Schrödinger equations, preprint.

    Google Scholar 

  18. J.J. Duistermaat [ 1980 ] On global action-angle coordinates, Comm. Pure Appl. Math. 23 687-706.

    Article  MathSciNet  Google Scholar 

  19. N. Ercolani [ 1989 ], Generalized theta functions and homoclinic varieties, Proc. Symp. Pure Appl. Math. 49 87.

    MathSciNet  Google Scholar 

  20. J. Guckenheimer and A. Mahalov [ 1992 ], Resonant triad interactions in symmetric systems, Physica D 54, 267 - 310.

    Article  MathSciNet  MATH  Google Scholar 

  21. V. F. Lazutkin [ 1993 ], KAM Theory and Semiclassical Approximations to Eigenfunctions, A Series of Modern Surveys in Mathematics, Springer-Verlag Berl in Heidelberg.

    Google Scholar 

  22. W. Magnus [ 1976 ], Monodromy groups and Hill’s equations, Commun. Pure Appl. Math. 29, 701-716.

    Article  MathSciNet  MATH  Google Scholar 

  23. S.V. Manakov [ 1974 ], On the theory of two-dimensional stationary self-Focusing of electromagnetic waves, Sov. Phys. JETP 38, 248-253.

    MathSciNet  Google Scholar 

  24. J. E. Marsden, R. Montgomery, and T.S. Ratiu [ 1990 ] Reduction, symmetry, and phases in mechanics. Memoirs AMS 436.

    Google Scholar 

  25. C.J. McKinstrie [ 1988 ], Relativistic solitary-wave solutions of the beat- Wave equations, Phys. Fluids 31, 288-297.

    Article  MATH  Google Scholar 

  26. C.J. McKinstrie and G.G. Luther [ 1988 ], Solitary-wave solutions of the generalized three-wave and four-wave equations, Phys. Lett. A 127, 14-18.

    Google Scholar 

  27. C.J. McKinstrie and X.D. Cao [ 1993 ], The nonlinear detuning of three- wave interactions, J. Opt. Soc. Am. B 10, 898-912.

    Google Scholar 

  28. J. Moser [ 1981 ], Integrable Hamiltonian Systems and Spectral Theory, Lezioni Fermiane, Accademia Nazionale dei Lincei, Pisa.

    MATH  Google Scholar 

  29. J. Moser and A.P. Veselov [ 1991 ], Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials, Commun. Math. Phys., 139, 217-243.

    Google Scholar 

  30. A.C. Newell [ 1985 ], Solitons in Mathematics and Physics, Regional Conf. Series in Appl. Math. 48, SIAM, Philadelphia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

In memory of Irene Dorfman

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Birkhäuser Boston

About this chapter

Cite this chapter

Alber, M.S., Luther, G.G., Marsden, J.E. (1997). Complex Billiard Hamiltonian Systems and Nonlinear Waves. In: Fokas, A.S., Gelfand, I.M. (eds) Algebraic Aspects of Integrable Systems. Progress in Nonlinear Differential Equations and Their Applications, vol 26. Birkhäuser Boston. https://doi.org/10.1007/978-1-4612-2434-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2434-1_1

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-1-4612-7535-0

  • Online ISBN: 978-1-4612-2434-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics