Skip to main content

Abstract

Wear is the removal of material from one or both of two solid surfaces in a solid-state contact. It occurs when solid surfaces are in a sliding, rolling, or impact motion relative to one another. Wear occurs through surface interactions at asperities, and components may need replacement after a relatively small amount of material has been removed or if the surface is unduly roughened. In well-designed tribological systems, the removal of material is usually a very slow process but it is very steady and continuous. The generation and circulation of wear debris, particularly in machine applications where the clearances are small relative to the wear particle size, may be more of a problem than the actual amount of wear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1955). Fretting and fretting corrosion. Lubrication 41, 85–96.

    Google Scholar 

  • Anonymous (1983). Tape/head interface study. RCA/NASA Goodard Contract No. NAS 5–26573, RCA Digital Communications and Recording Systems, Camden, New Jersey.

    Google Scholar 

  • Asami, K., Hashimoto, K., and Shinodaira, S. (1978). An XPS study of the passivity of a series of iron-chromium alloys in sulphuric acid, Corros. Sci. 18, 151–160.

    Article  Google Scholar 

  • Baird, A. W., Chaurette, W. F., and Lustig, С. D. (1979). High-resolution field measurements near ferrite recording heads. IEEE Trans. Magn. MAG-15, 1631–1633.

    Article  Google Scholar 

  • Bajorek, С. H. Nicolet, M. A., and Wilts, С. H. (1971). Preferential oxidation of Fe in permalloy films. Appl. Phys. Lett. 19, 82–84.

    Article  Google Scholar 

  • Bellman, R., and Levy, A. (1981). Erosion mechanism in ductile metals. Wear 70, 1–27.

    Article  Google Scholar 

  • Bhushan, B. (1984). Influence of test parameters on the measurement of the coefficient of friction of magnetic tapes. Wear 93, 81–99.

    Article  Google Scholar 

  • Bhushan, B. (1985). Assessment of accelerated head-wear test methods and wear mechanisms. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 104–111. Special Publication SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Bhushan, B. (1987). Development of a wear test apparatus for screening bearing-flange materials in computer tape drives. ASLE Trans. 30, 187–195.

    Google Scholar 

  • Bhushan, B. (1989). Tribological design-information storage and retrieval. Proc. Fifteen Leeds-Lyon Symposium on Tribology, Leeds, England, Elsevier Science Publishers, Amsterdam (in press).

    Google Scholar 

  • Bhushan, В., and Davis, R. E. (1983). Surface analysis study of electrical-arc-induced wear. Thin Solid Films 108, 135–156.

    Article  Google Scholar 

  • Bhushan, В., Davis, R. E., and Gordon, M. (1985a). Metallurgical re-examination of wear modes I: Erosive, electrical arcing, and fretting. Thin Solid Films 123, 93–112.

    Article  Google Scholar 

  • Bhushan, В., Davis, R. E., and Kolar, H. R. (1985b). Metallurgical re-examination of wear modes II: Adhesive and abrasive. Thin Solid Films 123, 113–126.

    Article  Google Scholar 

  • Bhushan, В., Nelson, G. W., and Wacks, M. E. (1986). Head-wear measurements by autoradiography of the worn magnetic tapes. J. Trib., Trans. ASME 108, 241–255.

    Google Scholar 

  • Bhushan, В., and Phelan, R. M. (1986). Frictional properties as a function of physical and chemical changes in magnetic tapes during wear. ASLE Trans. 29, 402–413.

    Google Scholar 

  • Bhushan, В., and Phelan, R. M. (1987). Overview of Challenger space shuttle tape-recovery study. IEEE Trans. Magn. MAG-23, 3179–3183.

    Article  Google Scholar 

  • Bhushan, В., and Martin, R. J. (1988). Accelerated wear test using magnetic-particle slurries. Tribology Trans. 31, 228–238.

    Article  Google Scholar 

  • Bitter, J. G. A. (1963). A study of erosion phenomena. Wear 6, Part I, 5–21.

    Article  Google Scholar 

  • Bitter, J. G. A. (1963). A study of erosion phenomena. Wear 6, Part II, 169–190.

    Article  Google Scholar 

  • Brusic, V., Aboaf, J. A., MacInnes, R. D., and Alessandrini, E. I. (1981). Influence of В and P on corrosion and passivation properties of Ni films. Paper 64, presented at The Electrochemical Society meeting, Minneapolis, Minnesota, May 10–15.

    Google Scholar 

  • Brusic, V., Russak, M., Schad, R., Frankel, G., Selius, A., DiMilia, D., and Edmonson, D. (1989). Corrosion of thin film magnetic disk: Galvanic effects of the carbon overcoat. J. Electrochem. Soc. 136, 42–46.

    Article  Google Scholar 

  • Burwell, J. T. (1957/1958). Survey of possible wear mechanisms. Wear 1, 119–141.

    Article  Google Scholar 

  • Calabrese, S. J., Bhushan, В., and Davis, R. E. (1989). A study by scanning electron microscopy of magnetic head-tape interface sliding. Wear 131, 123–133.

    Article  Google Scholar 

  • Calabrese, S. J., and Bhushan, B. (1990). A study by scanning electron microscopy of magnetic head-disk interface sliding. Wear (in press).

    Google Scholar 

  • Chandrasekar, S., and Bhushan, B. (1990). Friction and wear of ceramics for magnetic recording applications part II: experimental results. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Chandrasekar, S., Shaw, M. C., and Bhushan, B. (1987a). Comparison of grinding and lapping of ferrites and metals. J. Eng. Indus., Trans. ASME 109, 76–82.

    Article  Google Scholar 

  • Chandrasekar, S., Shaw, M. C., and Bhushan, B. (1987b). Morphology of ground and lapped surfaces of ferrite and metal. J. Eng. Indus., Trans. ASME 109, 83–86.

    Article  Google Scholar 

  • Chen, M. M., Lin, J., Wu, T. W., and Castillo, G. (1988). Wear resistance of iron oxide thin films, J. Appl. Phys. 63, 3275–3277.

    Article  Google Scholar 

  • Cook, N. H., and Bhushan, B. (1973). Sliding surface interface temperatures. J. hub. Tech., Trans. ASME 95, 31–36.

    Google Scholar 

  • Cuddihy, E. F. (1976). Hygroscopic properties of magnetic recording tape. IEEE Trans. Magn. MAG-12, 126–135.

    Article  Google Scholar 

  • Dickstein, H. L., Giordano, R. P., and Dickstein, W. H. (1988). The effect of pigment volume concentration on the magnetic and mechanical performance of particulate disk coatings. Presented at Symposium on Polymers in Information Technology, ACS National Meetting, Los Angeles, California. Sept. 25–30.

    Google Scholar 

  • Dimigen, H., and Hubsch, H. (1983–1984). Applying low-friction wear-resistant thin solid films by physical vapor deposition. Philips Tech. Rev. 41, 186–197.

    Google Scholar 

  • Dugger, M. T., Chung, Y. W., Bhushan, В., and Rothschild, W. (1990). Friction, wear, and interfacial chemistry in thin-film magnetic rigid disk files. J. Trib., Trans. ASME (in press).

    Google Scholar 

  • Engel, P. A. (1976). “Impact Wear of Materials.” Elsevier, Amsterdam.

    Google Scholar 

  • Enke, K., Dimigen, H., and Hübsch, H. (1980). Frictional properties of diamond-like carbon layers. Appl. Phys. Lett. 36, 291–292.

    Article  Google Scholar 

  • Evans, U. R. (1960). “The Corrosion and Oxidation of Metals: Scientific Principles and Practical Applications”, E. Arnold, London.

    Google Scholar 

  • Evans, A. G., and Marshall, D. B. (1980). Wear mechanisms in ceramics. In “Fundamentals of Friction and Wear of Materials” (D. A. Rigney, ed.), pp. 439–453. ASM, Metals Park, Ohio.

    Google Scholar 

  • Eyre, T. S. (1976). Wear characteristics of metals. Trib. Int. 9. 203–212.

    Article  Google Scholar 

  • Finnie, I. (1960). Erosion of surfaces by solid particles. Wear 3, 87–103.

    Article  Google Scholar 

  • Gatzen, H. H., Smallen, M. J., and Tedrow, P. T. (1987). Head-media wear in 51/4 in. rigid disk drives. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 116–122. Special Publication SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Glaeser, W. A. (1971). Friction and wear. IEEE Trans, on Parts, Hybrids, and Packaging PHP-7 2, 99–105.

    Article  Google Scholar 

  • Grimbolt, J., and Eldridge, J. M. (1982). Oxidation of Al films. J. Electrochem. Soc. 129, 2369–2372.

    Article  Google Scholar 

  • Hack, J., Dieter, S., and Matz, H. (1978). “Magnetic Recording Media Having a Low Coefficient of Friction.” U.S. Patent No. 4,074,002.

    Google Scholar 

  • Hahn, F. W. (1984a). Head wear as a function of isolated asperities on the surface of magnetic tape. IEEE Trans. Magn. MAG-20, 918–920.

    Article  Google Scholar 

  • Hahn, F. W. (1984b). Wear of recording heads by magnetic tape. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 1 (B. Bhushan, et al., eds.), pp. 41–48. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Hamilton, G. M., and Goodman, L. E. (1966). The stress field created by a circular sliding contact. J. Appl. Mech. 33, 371–376.

    Google Scholar 

  • Harada, K. (1981). Plasma polymerized protective films for plated magnetic disks. J. Appl. Poly. Sci. 26, 3707–3718.

    Article  Google Scholar 

  • Hirota, E., Mihara, T., Ikeda, A., and Chiba, H. (1971). Hot-pressed Mn-Zn ferrite for magnetic recording heads. IEEE Trans. Magn. MAG-7, 337–341.

    Article  Google Scholar 

  • Hirota, E., Hirota, K., and Kugimija, K. (1980). Recent developments of ferrite heads and their materials. Proc. 3rd Int. Conf. Ferrites, Tokyo, Japan, 667–674.

    Google Scholar 

  • Hu., Y., and Talke, F. E. (1988). A study of lubricant loss in the rail region of a magnetic recording slider using ellipsometry. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 5. (B. Bhushan and N. S. Eiss, eds.). pp. 43–48. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Huisman, H. F. (1984). “Magnetic Recording and Playback Device Having Means for Reducing Head Corrosion.” U.S. Patent No. 4,467,382, August 21, 1984.

    Google Scholar 

  • Husky, D., Rhodes, R. K., and Bhushan, B. (1986). Personal communications. IBM Corporation, Tucson, Arizona.

    Google Scholar 

  • Hutchings, I. M., and Winter, R. E. (1974). Particle errosion of ductile metals: A mechanism of material removal. Wear 27, 121–128.

    Article  Google Scholar 

  • Hutchings, I. M., Winter, R. E., and Field, J. E. (1976). Solid particle errosion of metals: The removal of surface material by spherical projectiles. Proc. Roy. Soc. (Lond.) A348, 379–392.

    Article  Google Scholar 

  • Ishikawa, M., Tani, N., Yamada, T., Ota, Y., Nakamura, K., and Itoh, A. (1986). Dual carbon, a new surface protective film for thin film hard disks. IEEE Trans. Magn. MAG-22, 999–1001.

    Article  Google Scholar 

  • Itoh, K., and Ogawa, S. (1987). Durability of magnetic coated disks. J. Mag. Soc. Jpn. 11(1), 9–12.

    MathSciNet  Google Scholar 

  • Kawakubo, Y. (1987). Tribology of rigid magnetic recording disks. J. Mag. Soc. Jpn. 11(1), 4–8.

    Google Scholar 

  • Kawakubo, Y., Ishihara, H., Seo, H., and Hirano, Y. (1984). Head crash process of magnetic coated disk during contact start/stop operations. IEEE Trans. Magn. MAG-20, 933–935.

    Article  Google Scholar 

  • Kehr, W. D., Meldrum, С. В., and Thornley, R. F. M. (1975). The influence of grain size on the wear of nickel-zinc ferrite by flexible media. Wear 31, 109–117.

    Article  Google Scholar 

  • Kelly, J. (1982). Tape and head wear. In “Magnetic Tape Recording for the Eighties” (F. Kalil, ed.), pp. 7–22. NASA Reference Publication 1075, Washington, D.C.

    Google Scholar 

  • Kita, T., Kogure, K., and Mitsuya, Y. (1984). Wear of the flying head of a magnetic disk file in mixed lubrication. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 1 (В. Bhushan et al., eds.), pp. 35–40. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Klokholm, E., and Wolfe, H. L. (1984). Surface damage in manganese-zinc and nickel-zinc ferrites. NATO ASI series E85, 665–681.

    Google Scholar 

  • Knowles, J. E. (1970). The effect of surface grinding upon the permeability of manganese-zinc ferrites. J. Phys. D3, 1346–1351.

    Google Scholar 

  • Kragelskii, I. V. (1965). Friction and Wear. Butterworth, London.

    Google Scholar 

  • Larsen-Basse, J. (1975). Influence of atmospheric humidity on abrasive wear I.3-body abrasion. Wear 31, 373–379.

    Article  Google Scholar 

  • Lauer, J. L., and Jones, W. R. (1986). Friction polymers. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 3 (B. Bhushan and N. S. Eiss, eds.), pp. 14–23. SP-21, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Lawn, B. R., and Wilshaw, T. R. (1975). “Fracture of Brittle Solids.” Cambridge Univ. Press, London.

    Google Scholar 

  • Lee, W. Y., and Eldridge, J. (1977). Oxidation studies of permalloy films by quartz crystal microbalance, AES, and XPS. J. Electrochem. Soc. 124, 1747–1751.

    Article  Google Scholar 

  • Lee, W. Y., and Guarnieri (1979). Effects of oxidation on the atmospheric corrosion of permalloy films. J. Electrochem. Soc. 126, 1533–1539.

    Article  Google Scholar 

  • Lee, M. H., Eldridge, J. M., Liclican, L., and Richardson, R. E. (1982). Electrochemical test to evaluate passivation layers: Overcoats of Si in ink. J. Electrochem. Soc. 129, 2174–2178.

    Article  Google Scholar 

  • Levy, F., and Wu, A. (1984). The preparation and utilization of radiolubed lubricants for determining lubricant distribution on magnetic disks. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 1 (B. Bhushan, D. Bogy, N. S. Eiss, and F. E. Talke, eds.), pp. 49–53. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Lundberg, G., and Palmgren, A. (1947). Dynamic capacity of rolling bearings. Acta Polytechnica, Mech. Eng. Series 1, No. 3, 7, R.S.A.E.E.

    Google Scholar 

  • Lundberg, G., and Palmgren, A. (1951). Dynamic capacity of roller bearing. Acta Polytechnia, Mech. Eng. Series 2, No. 4, 96, R.S.A.E.E.

    Google Scholar 

  • McKenzie, D. R., McPhedran, R. C., Botten, L. C., Savvides, N., and Netterfield, R. P. (1982). Hydrogenerated carbon films produced by sputtering in argonhydrogen mixtures. Appl. Opt. 21, 3615–3617.

    Article  Google Scholar 

  • Miyamoto, T., Sato, I., and Ando, Y. (1988). Friction and wear characteristics of thin film disk media in boundary lubrication. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 5 (B. Bhushan and N. S. Eiss, eds.), pp. 55–61. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyasato, T., Kawakami, Y., Kawano, T., and Hiraki, A. (1984). Preparation of sp3-rich amorphous carbon film by hydrogen gas reactive rf-sputtering of graphite, and its properties. Jap. J. Appl. Phys. 23, L234–L237.

    Article  Google Scholar 

  • Miyoshi, K. (1987). Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body condition. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 123–132. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyoshi, K., and Buckley, D. H. (1984). Effects of water vapor on friction and deformation of polymeric magnetic media in contact with a ceramic oxide. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 1 (B. Bhushan et al., eds.), pp. 27–34. SP-16, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyoshi, K., Buckley, D. H., and Tanaka, K. (1985). Effect of wear of structure-sensitive magnetic properties of ceramic ferrite in contact with magnetic tape. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 112–118. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Miyoshi, K., Buckley, D. H., and Tanaka, K. (1986). Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 3 (B. Bhushan and N. S. Eiss, eds.), pp. 42–49. SP-21, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Mizushima, M. (1971). Mn-Zn single crystal ferrite as a video-head material. IEEE Trans. Magn. MAG-7, 342–345.

    Article  Google Scholar 

  • Novotny, V., Itnyre, G., Homola, A., and Franco, L. (1987). Corrosion of thin film cobalt based magnetic recording media. IEEE Trans. Magn. MAG-23, 3465–3647.

    Google Scholar 

  • Novotny, V. and Staud, N. (1988). Correlation between environmental and electrochemical corrosion of thin film magnetic recording media, J. Electrochem. Soc. 135, 2931–2938.

    Article  Google Scholar 

  • Nyaiesh, A., and Holland, L. (1984). The growth of amorphous and graphitic carbon layers under ion bombardment in an RF plasma. Vacuum 34, 519–522.

    Article  Google Scholar 

  • Ohta, S., Yoshimura, F., Kimachi, Y., and Terada, A. (1987). Wear properties of sputtered y-Fe203 thin film disks. In “Tribology and Mechanics of Magnetic Storage Systems, Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 110–115. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Owen, R. J. (1971). “Magnetic Head/Tape Interface Study for Satellite Tape Recorders,” Vols. I to III. IIITRI/NASA Goddard Contract No. NAS5–11622, IIT Research Institute, Chicago, Illinois.

    Google Scholar 

  • Ozawa, K., Wakasugi, H., and Tanaka, K. (1984). Friction and wear of magnetic heads and amorphous metal sliding against magnetic tapes. IEEE Trans. Magn. MAG-20, 425–430.

    Article  Google Scholar 

  • Pethica, J. В., Koidl, P., Gobrecht, J., and Schüler, С. (1985). Micromechanical investigations of amorphous hydrogenated carbon films on silicon. J. Vac. Sci. Technol. 6, 2391–2393.

    Google Scholar 

  • Polleys, R. W. (1978). Work hardening of ferrite head surfaces by wear with flexible recording media. IBM J. Res. Dev. 22, 675–680.

    Article  Google Scholar 

  • Potgiesser, J. A., and Koorneef, J. (1974). Mechanical wear and degeneration of the magnetic properties of magnetic heads caused by the tape. The Radio and Electronic Engineer, 44, 313–318.

    Article  Google Scholar 

  • Rabinowicz, E. (1965). “Friction and Wear of Materials.” Wiley, New York.

    Google Scholar 

  • Rabinowicz, E. (1986). The tribology of magnetic recording systems—an overview. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 3 (B. Bhushan and N. S. Eiss, eds.), pp. 1–7. SP-21, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Saito, S., Futamoto, M., Honde, Y., Nishimura, T., and Yoshida, K. (1987). Wear-resistant properties of protective layers applied to thin-film metallic media. IEEE Trans. Magn. MAG-23, 2398–2400.

    Article  Google Scholar 

  • Sato, I. (1987). Tribology of y-Fe203 sputtered disk media. J. Mag. Soc. Jpn 11 (1), 22–26.

    Google Scholar 

  • Scarati, A. M., and Caporiccio, G. (1987). Frictional behavior and wear resistance of rigid disks lubricated with neutral and functional perfluoropolyethers. IEEE Trans. Magn. MAG-23, 106–108.

    Article  Google Scholar 

  • Smallen, M., Мее, P. В., Ahmad, A., Freitag, W., and Nanis, L. (1985). Observations on electrochemical and environmental corrosion tests for cobalt alloy disc media. IEEE Trans. Magn. MAG-21, 1530–1532.

    Article  Google Scholar 

  • Smit, J. (1971). “Magnetic Properties of Materials,” Chapter 1. McGraw-Hill, New York.

    Google Scholar 

  • Snelling, E. C., and Giles, A. D. (1983). “Ferrites for Inductors and Transformers,” Chapters 3 and 4. Research Studies Press, England.

    Google Scholar 

  • Söderberg, S., Hogmark, S. and Swahn, H. (1983). Mechanisms of material removal during erosion of a stainless steel. ASLE Trans. 26, 161–172.

    Google Scholar 

  • Sterne, E., and Tamme, D. (1965). Magnetostriction effects in remanence phase shifters. IEEE Trans. Microwave Theo, and Tech. MTT-13, 873–874.

    Article  Google Scholar 

  • Tago, A., Satoh, I., Kogure, K., and Kita, T. (1980). Methods of estimating mechanical characteristics for magnetic recording disks. Rev. Elec. Comm. Lab. 28 (5–6), 405–414.

    Google Scholar 

  • Talke, F. E., and Tseng, R. C. (1973). A study of material transfer during abrasive wear using autoradiographic methods. Lett. App. Eng. Sci. 1, 241–255.

    Google Scholar 

  • Talke, F. E., and Su, J. L. (1975). The mechanism of wear in magnetic recording disk files. Trib. Int. 8, 15–20.

    Article  Google Scholar 

  • Tallian, T. E., Baile, G. H., Dalai, H., Gustafsson, O. G. (1974). “Rolling Bearing Damage.” SKF Industries Inc., King of Prussia, Pennsylvania.

    Google Scholar 

  • Tanaka, K., Miyoshi, K., Miyao, Y., and Murayama, T. (1975). Friction and deformation of Mn-Zn ferrite single crystals. Proc. JSLE/ASIE Int. Lub. Conf., Tokyo, Japan, 58–65.

    Google Scholar 

  • Tarumi, K., and Noro, Y. (1982). A theoretical analysis of modulation noise and dc erased noise in magnetic recording. Appl. Phys. A28, 235–240.

    Google Scholar 

  • Terada, A., Ohtani, Y., Kimachi, Y., and Yoshimura, F. (1988). Wear properties of lubricated medium surface under high velocity head sliding. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 5 (B. Bhushan and N. S. Eiss, eds.), pp. 69–73. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Thurlings, L. (1983). On the noise powered spectral density of particulate recording media. IEEE Trans. Magn. MAG-19, 84–89.

    Article  Google Scholar 

  • Timsit, R. S., Stratford, G., and Fairlee, M. (1987). Characterization of lubricant/solid interfaces by FTIR. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 98–104. SP-22, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Timsit, R. S., and Stratford, G. (1988). Effect of humidity on friction at magnetic-head/hard-disk interfaces. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 5 (B. Bhushan and N. S. Eiss, eds.), pp. 17–23. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Tseng, R. C., and Talke, F. E. (1974). Transition from boundary lubrication to hydrodynamic lubrication of slider bearings. IBM J. Res. Dev. 18, 534–540.

    Article  Google Scholar 

  • Tsukamoto, Y., Yamaguchi, H., and Yanagisawa, M. (1988). Mechanical properties and wear characteristics of various thin films for rigid magnetic disks. IEEE Trans. Magn. MAG-24, 2644–2646.

    Article  Google Scholar 

  • Van Groenou, A. B. (1988). On the laws of head wear in video tape recording: The influence of pressure and time. In “Tribology and Mechanics of Magnetic Storage Systems,” Vol. 5 (B. Bhushan and N. S. Eiss, eds.), pp. 108–116. SP-25, STLE, Park Ridge, Illinois.

    Google Scholar 

  • Wagner, C., and Traud, W. (1938). Interpretation of corrosion phenomena by superimposition of electrochemical partial reaction and the formation of potentials of mixed electrodes. Z. Elektrochem. 44, 391–402.

    Google Scholar 

  • Walter, J. M. (1972). “Physical Chemistry”, 4th Ed., Prentice Hall, New Jersey.

    Google Scholar 

  • Watanabe, H., and Yamaga, I. (1972). Low noise manganese-zinc single crystal ferrite heads. IEEE Trans. Magn. MAG-8, 497–500.

    Article  Google Scholar 

  • Waterhouse, R. B. (1981). Fretting wear. Proc. Int. Conf. on Wear of Materials, pp. 17–22. ASME, New York.

    Google Scholar 

  • Weiss, R. D. (1979). Abrasive wear in magnetic disk recording. J. Appl. Phys. 50, 2399–2401.

    Article  Google Scholar 

  • Westwood, A. R. C. (1977). Environment-sensitive fracture of ionic and ceramic solids. Proc. Int. Conf. on Mechanisms of Environment Sensitive Cracking of Materials (A. R. С. Westwood, et al., eds.), pp. 283–297. Metals Soc., London.

    Google Scholar 

  • Wiederhorn, S. M. (1967). Influence of water vapor on crack propagation in soda-lime glass. J. Amer. Cer. Soc. 50, 407–414.

    Article  Google Scholar 

  • Wiederhorn, S. M. (1969). “Mechanical and Thermal Properties of Ceramics,” (J. B. Wachtman, ed.), p. 217. NBS Spec. Pub. 303, Gaithersburg, Maryland.

    Google Scholar 

  • Yamashita, T., Chen, G. L., Shir, J., and Chen, T. (1988). Sputtered ZrO2 overcoat with superior corrosion protection and mechanical performance in thin film rigid disk application. IEEE Trans. Magn. MAG-24, 2629–2634.

    Article  Google Scholar 

  • Yanagisawa, M. (1985a). Lubricants on plated magnetic recording disks. In “Tribology and Mechanics of Magnetic Recording Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 7–15. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Yanagisawa, M. (1985b). Tribological properties of spin-coated SiO2 protective film on plated magnetic recording disks. In “Tribology and Mechanics of Magnetic Recording Systems,” Vol. 2 (B. Bhushan and N. S. Eiss, eds.), pp. 16–20. SP-19, ASLE, Park Ridge, Illinois.

    Google Scholar 

  • Yanagisawa, M. (1987). Depletion of liquid lubricants on magnetic recording disks. In “Tribology and Mechanics of Magnetic Storage Systems, Vol. 4 (B. Bhushan and N. S. Eiss, eds.), pp. 93–97. SP-22, ASLE, Park Ridge, Illinois.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bhushan, B. (1996). Wear Mechanisms. In: Tribology and Mechanics of Magnetic Storage Devices. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2364-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2364-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7517-6

  • Online ISBN: 978-1-4612-2364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics