Skip to main content

Developments in Constitutive Modeling of Shock-Induced Reactions in Powder Mixtures

  • Chapter
High-Pressure Shock Compression of Solids IV

Part of the book series: High-Pressure Shock Compression of Condensed Matter ((SHOCKWAVE))

Abstract

Shock-induced chemical reactions in inorganic powder mixtures have been the focus of multiple experimental and computational studies due to the possibilities for new material development from high-pressure chemical reactions and the low cost of achieving high dynamic pressures [1–4]. These reactions may additionally benefit from inter-particle mass mixing and rapid thermal changes in the shock wave environment to produce fine microstructures in the product. Reactions of this sort have been shown to take place within about 100 ns (similar to explosive detonations), occur primarily within and just behind the shock front as it propagates through the powder mixture, and lead to nearly complete product formation [5–7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.A. Graham, Proc. 3rd International Symposium High Dynamic Pressures (ed. R. Chéret), Assoc. Française de Pyrotechnie, Paris, p. 175 (1989).

    Google Scholar 

  2. Y. Horie and A.B. Sawaoka, Shock Compression Chemistry of Materials, KTK Scientific Publishers, Tokyo, pp. 1–276 (1993).

    Google Scholar 

  3. N.N. Thadhani, Prog. Mater. Sci. 37, pp. 117–226 (1993).

    Article  Google Scholar 

  4. Y. Horie, Shock Waves In Material Science (ed. A.B. Sawaoka), Springer-Verlag, Tokyo, pp. 67–100 (1993).

    Google Scholar 

  5. S.S. Batsanov, G.S. Doronin, S.V. Klochkov, and A.I. Teut, Combust. Explosion, Shock Waves 22, pp. 765–768 (1987).

    Article  Google Scholar 

  6. M.B. Boslough, J. Chem. Phys. 92, pp. 1839–1849 (1990).

    Article  ADS  Google Scholar 

  7. L.S. Bennett, F.Y. Sorrell, I.K. Simonsen, Y. Horie, and K.R. Iyer, Appl. Phys. Lett. 61, pp. 520–521 (1993).

    Article  ADS  Google Scholar 

  8. L.S. Bennett and Y. Horie, J. Appl. Phys. 76, pp. 3394–3402 (1994).

    Article  ADS  Google Scholar 

  9. W. Herrmann, Shock Waves in Condensed Matter—1981 (eds. W.J. Nellis, L. Seaman, and R.A. Graham), American Institute of Physics, New York, pp. 346–359 (1982).

    Google Scholar 

  10. W. Herrmann, J. Appl. Phys. 40, p. 2490 (1969).

    Article  ADS  Google Scholar 

  11. J.N. Johnson, P.K. Tang, and C.A. Forest, J. Appl. Phys. 57, pp. 4323–4334 (1985).

    Article  ADS  Google Scholar 

  12. J.N. Johnson, Proc. R. Soc. Lond. A 413, pp. 329–350 (1987).

    Article  ADS  Google Scholar 

  13. S.R. DeGroot, Thermodynamics of Irreversible Processes, North-Holland, Amsterdam, pp. 163–194, (1951).

    MATH  Google Scholar 

  14. M. Baer and J. Nunziato, Int. J. Multiphase Flow 12, pp. 861–889 (1986).

    Article  MATH  Google Scholar 

  15. J.B. Bdzil and S.F. Son, Technical Report LA-12794-MS, Los Alamos National Laboratory (1995).

    Google Scholar 

  16. R. Jeanloz and R. Grover, Shock Compression of Condensed Matter—1987 (eds. S.C. Schmidt and N.C. Holmes) North-Holland, Amsterdam, pp. 69-72 (1988).

    Google Scholar 

  17. L.S. Bennett and Y. Horie, Shock Waves 4, pp. 127–136 (1994).

    Article  ADS  MATH  Google Scholar 

  18. B.R. Krueger and T. Vreeland, Jr., J. Appl. Phys. 69, p. 710 (1991).

    Article  ADS  Google Scholar 

  19. S.P. Marsh, Los Alamos National Laboratory: Shock Hugoniot Data, University of California Press, Berkeley (1980).

    Google Scholar 

  20. S.B. Kormer, A.I. Funtikov, V.D. Urlin, and A.N. Kolesnikova, Sov. Phys.-JETP 15, pp. 477–488 (1962).

    Google Scholar 

  21. John O. Hallquist, Technical Report UCID-18756, Rev. 3, Lawrence Livermore National Laboratory, Feb. 1987.

    Google Scholar 

  22. Century Dynamics Incorporated, AUTODYN Users Manual, Version 2.1, Century Dynamics Inc., San Ramon, CA, (1989).

    Google Scholar 

  23. K.-H. Oh and P.-A. Persson, J. Appl. Phys. 65, pp. 3852–3856 (1989).

    Article  ADS  Google Scholar 

  24. Q. Wu and F. Jing, Appl. Phys. Lett. 67, pp. 49–51 (1995).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bennett, L.S., Tanaka, K., Horie, Y. (1997). Developments in Constitutive Modeling of Shock-Induced Reactions in Powder Mixtures. In: Davison, L., Horie, Y., Shahinpoor, M. (eds) High-Pressure Shock Compression of Solids IV. High-Pressure Shock Compression of Condensed Matter. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2292-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2292-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7489-6

  • Online ISBN: 978-1-4612-2292-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics