Skip to main content

Regulation of Epididymal Function by Testicular Factors: The Lumicrine Hypothesis

  • Conference paper
The Testis

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

It is very clear that the mammalian epididymis needs androgens to be fully functional. During the 1980s and 1990s, however, it became evident that factors passing into the epididymal duct that originate from the testis appear to play an equal role in maintaining a functional epididymis. There have been very few studies, however, that examined the identification of such factors and the mechanisms by which they act. The mechanism of action of testicular factors cannot be classified as either endocrine or autocrine, although it may be considered paracrine in nature. The term lumicrine has been coined to define the regulation of cells by factors secreted and/or produced by an upstream set of cells through a luminal or ductal system (Fig. 15.1). Lumicrine is not new, and has been used to define a novel neuroendocrine intracellular signaling pathway (1). In this case, the pathway involves the lumen of the intracellular secretory pathway (e.g., the endoplasmic reticulum and the Golgi apparatus). Lumicrine regulation, however, can occur both intracellularly and extracellularly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schiller MR, Mains RE, Eipper BA. A novel neuroendocrine signaling pathway. Mol Endocrinol 1997; 11: 1846 – 57.

    Article  PubMed  CAS  Google Scholar 

  2. Skinner JD, Rowson LEA. Effect of unilateral cryptorchidism on sexual development in the pubescent male animal. J Reprod Fertil 1967; 14: 349 – 50.

    Article  PubMed  CAS  Google Scholar 

  3. Skinner JD, Rowson LEA. Some effects of unilateral cryptorchidism and vasectomy on sexual development of the pubescent ram and bull. J Reprod Fertil 1968; 42: 311 – 21.

    CAS  Google Scholar 

  4. Gustafsson B . Luminal contents of the bovine epididymis under conditions of reduced spermatogenesis, luminal blockage and certain sperm abnormalities. Acta Vet Scand 1966; 17(Suppl.): 1–80.

    Google Scholar 

  5. Prasad MRN, Rajalakshmi M, Gupta G, Karkun T. Control of epididymal function. J Reprod Fertil 1973;18(Suppl.):215–22.

    CAS  Google Scholar 

  6. Danzo BJ, Cooper TG, Orgebin-Crist M-C. Androgen binding protein (ABP) in fluids collected from the rete testis and cauda epididymidis of sexually mature and immature rabbits and observations on morphological changes in the epididymis following ligation of the ductuli efferentes. Biol Reprod 1977;17:64–77.

    Article  PubMed  CAS  Google Scholar 

  7. Moniem KA, Glover TD, Lubicz-Nawroeki CW. Effects of duct ligation and orchiectomy on histochemical reactions in the hamster epididymis. J Reprod Fertil 1978;54:173–76.

    Article  PubMed  CAS  Google Scholar 

  8. Fawcett DW, Hoffer AP. Failure of exogenous androgen to prevent regression of the initial segments of the rat epididymis after efferent duct ligation or ochiectomy. Biol Reprod 1979;20:162–81.

    Article  PubMed  CAS  Google Scholar 

  9. Nicander L, Osman DI, Ploen L, Bugge HP, Kvisgaard KN. Early effects of efferent ductule ligation on the proximal segment of the rat epididymis. Int J Androl 1983;6:91–102.

    Article  PubMed  CAS  Google Scholar 

  10. Abe K, Takano H, Ito T. Interruption of the luminal flow in the epididymal duct of the corpus epididymidis in the mouse, with special reference to differentiation of the epididymal epithelium. Arch Histolog Jap 1984;47:137–47.

    Article  CAS  Google Scholar 

  11. Reid BL, Cleland KW. The structure and function of the epididymis: histology of the rat epididymis. Aust J Zool 1957:5:223–46.

    Article  Google Scholar 

  12. Fan XP, Robaire B. Orchiectomy induces a wave of apoptotic cell death in the epididymis. Endocrinology 1998;139:2124–36.

    Article  Google Scholar 

  13. Turner TT, Riley TA. p53 independent, region–specific epithelial apoptosis is induced in the rat epididymis by deprivation of luminal factors. Mol Reprod Dev 1999;53:188–97.

    Article  PubMed  CAS  Google Scholar 

  14. Brooks DE . Influence of testicular secretions on tissue weight and on metabolic and enzyme activities in the epididymis of the rat. J Endocrinol 1979;82:305–13.

    Article  PubMed  CAS  Google Scholar 

  15. Robaire B, Ewing LL, Zirkin BR, Irby DC. Steroid Δ4-5α-reductase and 3α-hydroxysteroid dehydrogenase in the rat epididymis. Endocrinology 1977; 101: 1379–90.

    Article  PubMed  CAS  Google Scholar 

  16. Pujol A, Bayard F, Louvet J-P, Boulard C. Testosterone and dihydrotestosterone concentrations in plasma, epididymal tissues, and seminal fluid of adult rats. Endocrinology 1976;98:111–13.

    Article  PubMed  CAS  Google Scholar 

  17. Brooks DE, Higgins SJ. Characterization and androgen-dependence of proteins associated with luminal fluid and spermatozoa in the rat epididymis. J Reprod Fertil 1980;59:363–75.

    Article  PubMed  CAS  Google Scholar 

  18. Jones R, Brown CR, von Glos KI, Parker MG. Hormonal regulation of protein synthesis in the rat epididymis: characterization of androgen-dependent and testicular fluid dependent proteins. Biochem J 1980a; 188:776–76.

    Google Scholar 

  19. Jones R, von Glos KI, Brown CR. The synthesis of a sperm-coating protein in the initial segment of the rat epididymis is stimulated by factors in testicular fluid. IRCS Med Sci 1980b;8:193–9.

    Google Scholar 

  20. Holland MK, Vreeburg JTM, Orgebin-Crist M-C. Testicular regulation of epididymal protein secretion. J Androl 1992;13:266–73.

    PubMed  CAS  Google Scholar 

  21. Rigaudiere N, Ghyselinck NB, Faure J, Dufaure J-P. Regulation of the epididymal glutathione peroxidase-like protein in the mouse: dependence upon androgens and testicular factors. Mol Cell Endocrinol 1992;89:67–77.

    Article  PubMed  CAS  Google Scholar 

  22. Turner TT, Miller DW, Avery EA. Protein synthesis and secretion by the rat caput epididymidis in vivo: influence of the luminal microenvironment. Biol Reprod 1995;52:1012–19.

    Article  PubMed  CAS  Google Scholar 

  23. Robaire B, Viger RS. Regulation of epididymal epithelial cell functions. Biol Reprod 1995;52:226–36.

    Article  PubMed  CAS  Google Scholar 

  24. Robaire B . Effects of unilateral orchiectomy on rat epididymal Δ4-5’-reductase and 3α-hydroxysteroid dehydrogenase. Can J Physiol Parmacol 1979;57:998–1003.

    Article  CAS  Google Scholar 

  25. Garrett JE, Garrett SH, Douglass J. A spermatozoa-associated factor regulates proenkephalin gene expression in the rat epididymis. Mol Endocrinol 1990;4:108–18.

    Article  PubMed  CAS  Google Scholar 

  26. Zwain IH, Grima J, Cheng CY. Rat epididymal retinoic acid-binding protein: development of a radioimmunossay, its tissue distribution, and its changes in selected androgen-dependent organs after orchiectomy. Endocrinology 1992; 131: 1511–26.

    Article  PubMed  CAS  Google Scholar 

  27. Cornwall GA, Orgebin-Crist M-C, Hann SR. The CRES gene: a unique testis-regulated gene related to the cystatin family is highly retricted in its expression to the proximal region of the mouse epididymis. Mol Endocrinol 1992;6:1653–64.

    Article  PubMed  CAS  Google Scholar 

  28. Palladino MA, Hinton BT. Expression of multiple gamma-glutamyl transpeptidase messenger ribonucleic acid transcripts in the adult rat epididymis is differentially regulated by androgens and testicular factors in a region-specific manner. Endocrinology 1994;135:1146–56.

    Article  PubMed  CAS  Google Scholar 

  29. Winer MA, Wolgemuth DJ. The segment-specific pattern of A-raf expression in the mouse epididymis is regulated by testicular factors. Endocrinology 1995; 136:2561–72.

    Article  PubMed  CAS  Google Scholar 

  30. Vernet P, Faure J, Dufaure J-P, Drevet JR. Tissue and developmental distribution, dependence upon testicular factors and attachment to spermatozoa of GPX, a murine epididymis-speciflc glutathione peroxidase. Mol Reprod Deve 1997;47: 87–98.

    Article  CAS  Google Scholar 

  31. Lan Z-J, Palladino MA, Rudolph DB, Labus JC, Hinton BT. Identification, expression and regulation of the transcription factor polyomavirus enhancer activator 3 and its putative role in regulating the expression of gamma-glutamyl transpeptidase mRNA-IV in the rat epididymis. Biol Reprod 1997;57:186–93.

    Article  PubMed  CAS  Google Scholar 

  32. Cornwall GA, Hsia N. ADAM 7, a member of the ADAM (A Disintegrin and Metalloprotease) gene family is specifically expressed in the mouse anterior pituitary and epididymis. Endocrinology 1997;138:4262–72.

    Article  PubMed  CAS  Google Scholar 

  33. Borsook D, Rosen H, Collard M, Dressier H, Herrup K, Comb MJ, Hyman SE. Expression and regulation of a proenkephalin β-galactosidase fusion gene in the reproductive system of transgenic mice. Mol Endocrinol 1997;6:1502–12.

    Article  Google Scholar 

  34. Setchell BP, Maddocks S, Brooks DE. Anatomy, vasculature, innervation, and fluids of the male reproductive tract. In: Knobil E, Neill JD, eds. The physiology of reproduction, second ed. New York: Raven Press, 1994:1063–175.

    Google Scholar 

  35. Hinton BT, Setchell BP. Fluid secretion and movement. In: Russell LD, Griswold MD, eds. The Sertoli cell. Vienna, IL: Cache River Press, 1993:249–67.

    Google Scholar 

  36. Sujarit S, Jones RC, Setchell BP, Chaturapnich G, Lin M, Clulow J. Stimulation of protein secretion in the initial segment of the rat epididymis by fluid from the ram rete testis. J Reprod Fertil 1990;88:315–21.

    Article  PubMed  CAS  Google Scholar 

  37. Danzo BJ, Eller BC, Orgebin-Crist M-C. Studies on the site of origin of the androgen binding protein present in epididymal cytosol from mature intact rabbits. Steroids 1974;24:107–22.

    Article  PubMed  CAS  Google Scholar 

  38. Palladino MA, Laperche Y, Hinton BT. Multiple forms of gamma-glutamyl transpeptidase messenger ribonucleic acid are expressed in the adult rat testis and epididymis. Biol Reprod 1994;50:320–28.

    Article  PubMed  CAS  Google Scholar 

  39. Lan Z-J, Lye RJ, Holic N, Labus JC, Hinton BT. The involvement of polyomavirus enhancer activator 3 (PEA3), an ets transcription factor, in the regulation of gamma-glutamyl transpeptidase mRVA-IV in the rat epididymis. Biol Reprod 1999;60:664–73.

    Article  PubMed  CAS  Google Scholar 

  40. Hinton BT, Lan ZJ, Rudolph DB, Labus JC, Lye RJ. Testicular regulation of epididymal gene expression. J Reprod Fert Suppl 1999;53:47–57.

    Google Scholar 

  41. Hinton BT, Palladino MA, Rudolph DB, Lan ZJ, Labus JC. The role of the epididymis in the protection of spermatozoa. In: Pederson RA, Schatten GP, eds. Current Topics in Developmental Biology, vol. 33. New York: Academic Press, 1996: 61–102.

    Google Scholar 

  42. Rudolph DB, Hinton BT. Stability and transcriptional regulation of gamma-glutamyl transpeptidase mRNA expression in the initial segment of the rat epididymis. J Androl 1997;18:501–12.

    PubMed  CAS  Google Scholar 

  43. Xin JH, Cowie A, Lachance P, Hassell JA. Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells. Genes Dev 1992;6:481–96.

    Article  PubMed  CAS  Google Scholar 

  44. Lan Z-J, Labus JC, Hinton BT. Regulation of gamma-glutamyl transpeptidase catalytic activity and protein level in the initial segment of the rat epididymis by testicular factors: role of basic fibroblast growth factor. Biol Reprod 1998;58:197–206.

    Article  PubMed  CAS  Google Scholar 

  45. Alarid ET, Cunha GR, Young P, Nicoll CS. Evidence for an organ-and sex-specific role of basic fibroblast growth factor in the development of the fetal mammalian reproductive tract. Endocrinology 1991;129:2148–54.

    Article  PubMed  CAS  Google Scholar 

  46. Brooks DE . Effect of androgens on protein synthesis and secretion in various regions of the rat epididymis, as analysed by two-dimensional gel electrophoresis. Mol Cell Endocrinol 1983;29:255–70.

    Article  PubMed  CAS  Google Scholar 

  47. Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Godecke S, Birchmeier C. The c-ros tyrosine receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev 1996;10:1184–93.

    Article  PubMed  CAS  Google Scholar 

  48. Yeung CH, Sonnenberg-Riethmacher E, Cooper TG. Receptor tyrosine kinase c-ros knock-out mice as a model for the study of epididymal regulation of sperm function. J Reprod Fert Suppl 1999;53:137–47.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Hinton, B.T., Lan, Z.J., Lye, R.J., Labus, J.C. (2000). Regulation of Epididymal Function by Testicular Factors: The Lumicrine Hypothesis. In: Goldberg, E. (eds) The Testis. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2106-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2106-7_15

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7416-2

  • Online ISBN: 978-1-4612-2106-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics