Skip to main content

Abstract

“System identification” is a term that describes mathematical techniques used to infer the properties of an unknown system from measurements of the system inputs and outputs. Typically, the inputs to the system are controlled by the experimenter, although the only real requirements are that all the inputs and outputs are known and measurable and that the inputs sufficiently excite the system. System identification techniques have been applied to a wide range of problems, this chapter focuses on applications related to the neuromuscular system (i.e., muscle, joint, and limb mechanics) as well as the neural signals that control posture and movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acosta, A.M. and Kirsch, R.F. (1996a). Endpoint stiffness estimation for assessing arm stability. 1st Ann. Conf. Int. Funct. Elec. Stim. Soc., 1:60.

    Google Scholar 

  • Acosta, A.M. and Kirsch, R.F. (1996b). A planar manipulator for the study of multi-joint human arm posture and movement control. 9th Eng. Found. Conf. Biomech. Neur. Cont. Mov., 9:1–2.

    Google Scholar 

  • Agarwal, G.C. and Gottlieb, G.L. (1977). Compliance of the human ankle joint. Trans. ASME, 99:166–170.

    Google Scholar 

  • Akaike, H. (1994). A new look at the statistical model identification. IEEE Trans. Auto. Cont., 19:716–23.

    Article  Google Scholar 

  • An, C.H., Atkeson, C.G., and Hollerbach, J.M. (1988). Model-Based Control of a Robot Manipulator. The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Barden, J.A. (1981). Estimate of rate constants of muscle crossbridge turnover based on dynamic mechanical measurements. Physiol. Chem. and Phys., 13:211–219.

    CAS  Google Scholar 

  • Bendat, J.S. and Piersol, A.G. (1986). Random Data: Analysis and Measurement Procedures (Second edition). Wiley-Interscience, New York.

    Google Scholar 

  • Bennett, D.J. (1993). Torques generated at the human elbow joint in response to constant position errors imposed during voluntary movements. Exp. Brain Res., 95:488–498.

    PubMed  CAS  Google Scholar 

  • Bennett, D.J., Hollerbach, J.M., Xu, Y., and Hunter, I.W. (1992). Time-varying stiffness of human elbow joint during cyclic voluntary movement. Exp. Brain Res., 88:433–442.

    Article  PubMed  CAS  Google Scholar 

  • Bizzi, E., Polit, A., and Morasso, P. (1976). Mechanisms underlying achievement of final head position. J. Neurophysiol., 39:435–444.

    PubMed  CAS  Google Scholar 

  • Boyd, S. and Chua, L.O. (1985). Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Trans. Cir. Sys., CAS-32:1150–1161.

    Article  Google Scholar 

  • Calancie, B. and Stein, R.B. (1987). Measurement of rate constants for the contractile cycle of intact mammalian muscle fibers. Biophys. J., 51:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. and Billings, S.A. (1989). Representation of non-linear systems: the NARMAX model. Int. J. Cont., 49:1013–1032.

    Google Scholar 

  • Chizeck, H.J., Lan, N., Streeter-Palmieri, L., and Crago, P.E. (1991). Feedback control of electrically stimulated muscle using simultaneous pulse width and stimulus period modulation. IEEE Trans. Biomed. Eng., 38:1224–1234.

    Article  PubMed  CAS  Google Scholar 

  • Cooker, H.S., Larson, C.R., and Luschei, E.S. (1980). Evidence that the human jaw stretch reflex increases the resistance of the mandible to small displacements. J. Physiol., 308:61–78.

    PubMed  CAS  Google Scholar 

  • Crago, P., Lemay, M., and Liu, L. (1990). External control of limb movements involving environmental interactions. In Multiple Muscle Systems: Biomechanics and Movement Organization. Winters, J. and Woo, S.-Y. (eds.), pp. 343–359. Springer-Verlag, New York.

    Google Scholar 

  • Evans, C.M., Fellows, S.J., Rack, P.M.H., Ross, H.F., and Walters, D.K.W. (1983). Response of the normal human ankle joint to imposed sinusoidal movements. J. Physiol., 344:483–502

    PubMed  CAS  Google Scholar 

  • Gomi, H. and Kawato, M. (1996). Equilibrium-point control hypothesis examined by measured arm stiffness during multi-joint movement. Science, 272:117–120.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, I.W. (1986). Experimental comparison of Wiener and Hammerstein cascade models of frog muscle fiber mechanics. Biophys. J., 49:81a.

    Google Scholar 

  • Hunter, I.W. and Kearney, R.E. (1982a). Dynamics of human ankle stiffness: variation with mean ankle torque. J. Biomech., 15:747–752.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, I.W. and Kearney, R.E. (1982b). Two-sided linear filter identification. Med. Biol. Eng. Comput., 21:203–209.

    Article  Google Scholar 

  • Hunter, I.W. and Kearney, R.E. (1983). Invariance of ankle dynamic stiffness during fatiguing muscle contractions. J. Biomech., 16:985–991.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A.F. (1957). Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem., 7:255–318.

    PubMed  CAS  Google Scholar 

  • Joyce, G.C., Rack, P.M.H., and Ross, H.F. (1974). The forces generated at the human elbow joint in response to imposed sinusoidal movements of the forearm. J. Physiol., 240:351–374.

    PubMed  CAS  Google Scholar 

  • Kawai, M. and Schachat, F. H. (1984). Differences in the transient response of fast and slow skeletal muscle fibers. Biophys. J., 45:1145–1151.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, R.E. and Hunter, I.W. (1982). Dynamics of human ankle stiffness: variation with displacement amplitude. J. Biomech., 15:753–756.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, R.E. and Hunter, I.W. (1983). System identification of human triceps surae stretch reflex dynamics. Exp. Brain Res., 51:117–127.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, R.E. and Hunter, I.W. (1984). System identification of human stretch reflex dynamics: tibialis anterior. Exp. Brain Res., 56:117–127.

    Article  Google Scholar 

  • Kearney, R.E. and Hunter, I.W. (1988). Nonlinear identification of stretch reflex dynamics. Ann. Biomed. Eng., 16:79–94.

    Article  PubMed  CAS  Google Scholar 

  • Kearney, R.E. and Hunter, I.W. (1990). System identification of human joint dynamics. Crit. Rev. Biomed. Eng., 18:55–87.

    PubMed  CAS  Google Scholar 

  • Kearney, R.E., Stein, R.B., and Parameswaran, L. (1996). Identification of intrinsic and reflex contributions to human ankle stiffness dynamics. IEEE Trans. Biomed. Eng., (in Press).

    Google Scholar 

  • Kirsch, R. and Kearney, R. (1993). Identification of time-varying dynamics of the human triceps surae stretch reflex: II. Rapid imposed movement. Exp. Brain Res., 97:128–138.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, R. and Rymer, W. (1992). Neural compensation for fatigue induced changes in muscle stiffness during perturbations of elbow angle in man. J. Neurophysiol., 68:449–470.

    PubMed  CAS  Google Scholar 

  • Kirsch, R., Boskov, D., and Rymer, W. (1994). Muscle stiffness during transient and continuous movements of cat muscle: perturbation characteristics and physiological relevance. IEEE Trans. Biomed. Eng., 41:700–758.

    Article  Google Scholar 

  • Kirsch, R., Kearney, R., and MacNeil, J. (1993). Identification of time-varying dynamics of the human triceps surae stretch reflex: I. Rapid isometric contraction. Exp. Brain Res., 97:115–127.

    Article  PubMed  CAS  Google Scholar 

  • Kirsch, R.F., Perreault, E.J., and Acosta, A.M. (1996) Identification of multi-input dynamic systems: limb stiffness dynamics. 9th Eng. Found. Conf. Biomech. Neur. Cont. Mov., 9:46–47.

    Google Scholar 

  • Kirsch, R.E. and Kearney, R.E. (1996). Identification of time-varying stiffness dynamics of the human ankle during an imposed movement. Exp. Brain Res., (in Press).

    Google Scholar 

  • Korenberg, M. and Hunter, I. (1990). The identification of nonlinear biological systems: Wiener kernel approaches. Ann. Biomed. Eng., 18:629–54.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, M.J. (1991). Parallel cascade identification and kernel estimation for nonlinear systems. Ann. Biomed. Eng., 19:429–455.

    Article  PubMed  CAS  Google Scholar 

  • Korenberg, M.J. and Hunter, I.W. (1986). The identification of nonlinear biological systems: LNL cascade models. Biol. Cybern., 55:125–134.

    PubMed  CAS  Google Scholar 

  • Kröller, J., Grüsser, O.-J., and Weiss, L.-R. (1985). The response of primary muscle spindle endings to random muscle stretch: a quantitative analysis. Exp. Brain Res., 61:1–10.

    Article  PubMed  Google Scholar 

  • Kukreja, S.L., Kearney, R.E., and L., G.H. (1996). Estimation of continuous-time models from sampled data via the bilinear transform. Proc. 18th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Amsterdam, The Netherlands.

    Google Scholar 

  • Lacquaniti, F., Borghese, N.A., and Carrozzo, M. (1991) Transient reversal of the stretch reflex in human arm muscles. J. Neurophysiol., 66:939–954.

    PubMed  CAS  Google Scholar 

  • Lacquaniti, F., Carrozzo, M., and Borghese, N.A. (1993). Time-varying mechanical behavior of multi-jointed arm in man. J. Neurophysiol., 69:1443–1464.

    PubMed  CAS  Google Scholar 

  • Lakie, M., Walsh, E.G., and Wright, G.W. (1984). Resonance at the wrist demonstrated by the use of a torque motor an instrumental analysis of muscle tone in man. J. Physiol., 353:265–285.

    PubMed  CAS  Google Scholar 

  • Ljung, L. (1987). System Identification for the User. Englewood Cliffs. Prentice-Hall, New Jersey.

    Google Scholar 

  • MacNeil, J.B., Kearney, R.E., and Hunter, I.W. (1992). Identification of time-varying biological systems from ensemble data. IEEE Trans. Biomed. Eng., 39:1213–1225.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, P.Z. and Marmarelis, V.A. (1978). Analysis of Physiological Systems: The White Noise Approach. Plenum Press, New York.

    Google Scholar 

  • Marmarelis, V.Z. (1989a). Signal transformation and coding in neural systems. IEEE Trans. Biomed. Eng., 36:15–24.

    Article  PubMed  CAS  Google Scholar 

  • Marmarelis, V.Z. (1989b). Volterra-Wiener analysis of a class of nonlinear feedback systems and application to sensory biosystems. In Advanced Methods of Physiological Systems Modeling. Marmarelis, V.Z. (ed.), pp. 302, Plenum Press, New York.

    Google Scholar 

  • Marmarelis, V.Z. (1993). Identification of nonlinear biological systems using laguerre expansions of kernels. Ann. Biomed. Eng., 21:573–589.

    Article  PubMed  CAS  Google Scholar 

  • McIntyre, J., Mussa-Ivaldi, F., and Bizzi, E. (1996). The control of stable arm postures in the multi-joint arm. Exp. Brain Res., 110:248–264.

    Article  PubMed  CAS  Google Scholar 

  • Mussa-Ivaldi, F.A., Hogan, N., and Bizzi, E. (1985). Neural, mechanical and geometric factors subserving arm position in humans. J. Neurosci., 5:2732–2743.

    PubMed  CAS  Google Scholar 

  • Palm, G. (1979). On representation and approximation of nonlinear systems. Biol. Cybern., 34:49–52

    Article  Google Scholar 

  • Peckham, P.H. and Keith, W. (1992). Motor prostheses for restoration of upper extremity function. In Neural Prostheses: Replacing Motor Function After Disease or Injury. Stein, R.B., Peckham, P.H., and Popovic, D.P. (eds.), Oxford University Press, New York.

    Google Scholar 

  • Poppele, R.E. (1981). An analysis of muscle spindle behavior using randomly applied stretches. Neuroscience, 6:1157–1165.

    Article  PubMed  CAS  Google Scholar 

  • Rissanen, J. (1978). Modelling by shortest data description. Automatica, 14:465–471.

    Article  Google Scholar 

  • Robinson, C.J., Flaherty, B., Fehr, L., Agarwal, G.C., Harris, G.F., and Gottlieb, G.L. (1994). Biomechanical and reflex responses to joint perturbations during electrical stimulation of muscle: instrumentation and measurement techniques. Med. Biol. Eng. Comput., 32:261–272.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, H.M. (1992). White-noise analysis in neurophysiology. Physiol. Rev., 72:491–505.

    PubMed  CAS  Google Scholar 

  • Shue, G., Crago, P.E., and Chizeck, H.J. (1995). Muscle-joint models incorporating activation dynamics, moment-angle, and moment-velocity properties. IEEE Trans. Biomed. Eng., 42:212–223.

    Article  PubMed  CAS  Google Scholar 

  • Soechting, J., Dufresne, J., and Lacquaniti, F. (1981). Time-varying properties of myotatic response in man during some simple motor tasks. J. Neurophysiol., 46:1226–1243.

    PubMed  CAS  Google Scholar 

  • Stein, R.B., Rolf, R., and Calancie, B. (1986). Improved methods for studying the mechanical properties of biological systems with random length changes. Med. Biol. Eng. Comput., 24:292–300.

    Article  PubMed  CAS  Google Scholar 

  • Tai, C. and Robinson, C.J. (1995). Variation of human knee stiffness with angular perturbation intensity. Proc. 17th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Montreal, Canada.

    Google Scholar 

  • Tsuji, T., Morasso, P., Goto, K., and Ito, K. (1995). Hand impedance characteristics during maintained posture. Biol. Cybern., 2:475–485.

    Article  Google Scholar 

  • Verhaegen, M. and DeWilde, P. (1992). Subspace model identification part 1. The output-error state-space model identification class of algorithms. Int. J. Cont., 56:1187–1210.

    Article  Google Scholar 

  • Viviani, P. and Berthoz, A. (1975). Dynamics of the head-neck system in response to small perturbations: analysis and modeling in the frequency domain. Biol. Cybern., 19:19–37.

    Article  PubMed  CAS  Google Scholar 

  • Volterra, V. (1959). Theory of functionals and of integral and integro-differential equations. Dover, New York.

    Google Scholar 

  • Weiss, P.L., Hunter, I.W., and Kearney, R. (1988). Human ankle joint stiffness over the full range of muscle activation levels. J. Biomech., 21:539–544.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P.L., Kearney, R.E., and Hunter, I.W. (1986a). Position dependence of ankle joint dynamics: passive mechanics. J. Biomech., 19:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, P.L., Kearney, R.E., and Hunter, I.W. (1986b). Position dependence of ankle joint dynamics: active mechanics. J. Biomech., 19:737–751.

    Article  PubMed  CAS  Google Scholar 

  • Westwick, D.T. (1996). Methods for the identification of multiple-input nonlinear systems. Ph.D. Thesis. Depart. Elec. Eng. Biomed. Eng., McGill University, Montreal.

    Google Scholar 

  • Westwick, D.T. and Kearney, R.E. (1996a). Identification of physiological systems: a robust method for non-parametric impulse response estimation. Med. Biol. Eng. Comput., (in press).

    Google Scholar 

  • Westwick, D.T. and Kearney, R. E. (1996b). Robust Nonlinear System Identification Using Band-Limited Inputs. Ann. Biomed. Eng. (in press).

    Google Scholar 

  • Wiener, N. (1958). Nonlinear Problems in Random Theory. John Wiley & Sons, New York.

    Google Scholar 

  • Zahalak, G.I. (1981). A distribution-moment approximation for kinetic theories of muscular contraction. Math. Biosci., 55:89–114.

    Article  Google Scholar 

  • Zahalak, G.I. and Heyman, S.J. (1979). A quantitative evaluation of the frequency-response characteristics of active human skeletal muscle in vivo. Trans. ASME, 101:28–37.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kearney, R.E., Kirsch, R.F. (2000). System Identification and Neuromuscular Modeling. In: Winters, J.M., Crago, P.E. (eds) Biomechanics and Neural Control of Posture and Movement. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-2104-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-2104-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7415-5

  • Online ISBN: 978-1-4612-2104-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics