Skip to main content

Hecke Rings and Universal Deformation Rings

  • Chapter
Modular Forms and Fermat’s Last Theorem

Abstract

Wiles’ proof of the Shimura-Taniyama-Weil conjecture for semi-stable elliptic curves is based on the “modularity” of certain universal deformation rings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. B. Conrad: The Flat Deformation Functor, this volume.

    Google Scholar 

  2. E. Cline, B. Parshall, L. Scott: Cohomology of finite groups of Lie type I, Publ. Math. IHES 45 (1975), 169–191.

    MathSciNet  MATH  Google Scholar 

  3. H. Darmon, F. Diamond, R. Taylor: Fermat’s Last Theorem, Current Developments in Mathematics, 1995, International Press, Boston (preliminary version).

    Google Scholar 

  4. B. de Smit, K. Rubin, R. Schoof: Criteria for Complete Intersections, this volume.

    Google Scholar 

  5. F. Diamond: The refined conjecture of Serre, in: Elliptic curves, modular forms and Fermat’s last theorem, J. Coates and S.T. Yau (edts.), International Press Boston (1995) 22–37.

    Google Scholar 

  6. F.Diamond: On formation rings and Hecke rings,to appear.

    Google Scholar 

  7. F. Diamond: An Extension of Wiles’ Results, this volume.

    Google Scholar 

  8. F. Diamond, K. Ribet: $-adic Modular Deformations and Wiles’s “Main Conjecture”, this volume.

    Google Scholar 

  9. F. Diamond, R. Taylor: Lifting modular mod 1 representations, Duke Math. J. 74 (1994), 253–269.

    MathSciNet  MATH  Google Scholar 

  10. B. Edixhoven: Serre’s Conjectures, this volume.

    Google Scholar 

  11. R. Greenberg: Iwasawa theory for p-adic representations,in:Algebraic Number Theory, in honor of K. Iwasawa, Adv. Studies in Pure Math. 17, Academic Press, San-Diego (1989), 97137.

    Google Scholar 

  12. B. Huppert: Endliche Gruppen I, Grundlehren Math. Wiss.134, Springer-Verlag, New-York, Berlin, Heidelberg (1983).

    Google Scholar 

  13. B.Mazur: Modular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 133–186.

    Google Scholar 

  14. B. Mazur: Deforming Galois representations, in: Galois groups over Q, Y. Ihara, K. Ribet, J.-P. Serre edts. MSRI publications 16 Springer-Verlag, New-York, Berlin, Heidelberg (1989) 385–437.

    Google Scholar 

  15. B. Mazur: An Introduction to the Deformation Theory of Galois Representations, this volume.

    Google Scholar 

  16. R. Ramakrishna: On a variation of Mazur’s deformation func-tor, Comp. Math 87 (1993), 269–286.

    MathSciNet  MATH  Google Scholar 

  17. K. Ribet: On modular representations of Gal(Q/Q) arising from modular forms, Inv. Math. 100 (1990), 431–476.

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Rubin: Modularity of Mod 5 Representations, this volume.

    Google Scholar 

  19. J.-P. Serre: Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke math. J. 54 (1987), 179–230.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Taylor, A. Wiles: Ring-theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Tilouine: Hecke Algebras and the Gorenstein Property,this volume.

    Google Scholar 

  22. L. Washington: Galois Cohomology, this volume.

    Google Scholar 

  23. A. Wiles: Modular elliptic curves and Fermat’s Last Theorem,Ann. Math. 141 (1995), 443–551.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

De Shalit, E. (1997). Hecke Rings and Universal Deformation Rings. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat’s Last Theorem. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1974-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1974-3_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98998-3

  • Online ISBN: 978-1-4612-1974-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics