Skip to main content

Hecke Algebras and the Gorenstein Property

  • Chapter
Modular Forms and Fermat’s Last Theorem

Abstract

The goal of this paper is to show the importance of the Gorenstein property for the Hecke algebra and its relation with the local freeness of the cohomology of modular curves as a module over the Hecke algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Altman, S. Kleinman, Introduction to Grothendieck duality theory, SLN,Springer.

    Google Scholar 

  2. H. BassOn the ubiquity of Gorenstein rings, Math. Zeit. 82 (1963), 8–28.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Buzzard, The levels of modular representations, Ph.D. thesis, Cambridge,1995.

    Google Scholar 

  4. P. Deligne, M. RapoportLes Schémas de modules de courbes elliptiequs, Mod-ular functions of one variable, SLN 349, Springer, 1973.

    Google Scholar 

  5. A. Grothendieck Local cohomology, SLN 41, Springer, 1967.

    Google Scholar 

  6. H. HidaOn congruence divisors of cusp forms as special values of their zeta functions, Invent. Math. 64 (1981), 221–262.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Kunz, Introduction to commutative algebra and algebraic geometry, Birk-hafiser, 1985.

    Google Scholar 

  8. H. Matsumura Commutative algebra, Benjamin, 1970.

    Google Scholar 

  9. B. MazurModular curves and the Eisenstein ideal, Publ. Math. IHES 47 (1977), 133–186.

    Google Scholar 

  10. B. Mazur Rational isogenies of prime degree, Invent. Math. 44 (1978), 129–162.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Mazur, K. Ribet, Two dimensional representations in the arithmetic of modular curves, in Courbes modulaires et courbes de Shimura, Astérisque 196–197 (1991).

    Google Scholar 

  12. B. Mazur, J. TilouineReprésentationns galoisiennes différentielles de Kähler et conjectures principales, Publ Math. IHES 71 (1990), 65–103.

    MathSciNet  MATH  Google Scholar 

  13. B. Mazur, A. Wiles, Class-fields of abelian extensions of Q, Invent. Math. 76 (1984), 179–330.

    MathSciNet  MATH  Google Scholar 

  14. M. Raynaud Variétés abéliennes et géométrie rigide,Actes Congres Int. Math.,vol. 1, 1970, pp. 473–477.

    Google Scholar 

  15. M. Raynaud Spécialisation du foncteur de Picard, Publ. Math. IHES 38 (1970), 27–76.

    MathSciNet  MATH  Google Scholar 

  16. M. Raynaud Schémas en groupes de type (p, p,…, p), Bull. Soc. Math. France 102 (1974), 241–280.

    MathSciNet  MATH  Google Scholar 

  17. J. Tatep-divisible groups, Proceedings of a conference on local fields (Drieber-gen 1966), Springer, 1967, pp. 158–183.

    Google Scholar 

  18. R. Taylor, A. WilesRing theoretic properties of certain Hecke algebras, Ann. Math. 141 (1995), 553–572.

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Tilouine, Un sous-groupe p-divisible de la jacobienne de Xl(N;) comme module sur l’algébre de Hecke, Bull. Soc. Math. France 115 (1987), 329–360.

    MathSciNet  MATH  Google Scholar 

  20. A. Wiles, Modular curves and the class group of Q(pp), Invent. Math. 58 (1980), 407–456.

    Article  MathSciNet  Google Scholar 

  21. A. Wiles On p-adic representations for totally real fields, Ann. Math. 123 (1986), 407–456.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Wiles The Iwasawa conjecture for totally real fields, Ann. Math. 131 (1990), 493–540.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Wiles Modular elliptic curves and Fermat’s last theorem, Ann. Math. 142 (1995), 443–551.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tilouine, J. (1997). Hecke Algebras and the Gorenstein Property. In: Cornell, G., Silverman, J.H., Stevens, G. (eds) Modular Forms and Fermat’s Last Theorem. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1974-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1974-3_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98998-3

  • Online ISBN: 978-1-4612-1974-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics