Skip to main content

Extrinsic Factors Affecting Sperm Motility: Immunological and Infectious Factors and Reactive Oxygen Species

  • Chapter
Male Sterility and Motility Disorders

Part of the book series: Serono Symposia USA ((SERONOSYMP))

Abstract

Sperm motility requires the interaction of intracellular factors, including an adequate level of adenosine triphosphate (ATP), functional axonemal dynein ATPases, and an intact axoneme bathing in a proper ionic environment. These factors also represent the minimal conditions required to initiate and maintain the motility of modeled spermatozoa (i.e., spermatozoa demembranated by a detergent treatment in which motility is initiated by the addition of ATP and ions (1-4). Extracellular factors that affect these minimal requirements will cause an arrest in sperm motility. Factors such as sperm agglutinating antibodies that act at the surface of cells by forming a physical network of spermatozoa bound to each other obviously act via different mechanisms. This chapter will not cover the effects of sperm immobilizing or agglutinating antibodies on sperm motility, but it will focus on the actions of factors, such as infections, proteins of the immune system, polymorphonuclear leukocytes, and reactive oxygen species (ROS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Cell Biol 1972;54:75–97.

    Article  PubMed  CAS  Google Scholar 

  2. Gibbons IR. Cilia and flagella of eukaryotes. J Cell Biol 1981;91:107s–24s.

    Article  PubMed  CAS  Google Scholar 

  3. Gagnon C. Regulation of sperm motility at the axonemal level. Reprod Fertil Dev 1995;7:811–24.

    Article  Google Scholar 

  4. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. JAndrol 1992;13:379–86.

    Google Scholar 

  5. Comhaire FH, Verschaegen G, Vermeulen L. Diagnosis of accessory gland infection and its possible role in male infertility. Int JAndrol 1980;3:32–45.

    Article  CAS  Google Scholar 

  6. Purvis K, Christiansen E. Infection in the male reproductive tract. Impact diagnosis and treatment in relation to male infertility. Int J Androl 1993;16:1–13.

    Article  PubMed  CAS  Google Scholar 

  7. Schirren C, Zander HA. Genitalinfektionen des mannes und ihre auswirkungen auf die spermatozoenmotilität. Medizinische Welt 1966;45:45–47.

    Google Scholar 

  8. Teague NS, Boyarski S, Glenn JF. Interference of human spermatozoa motility by Escherichia coli. Fertil Steril 1971;22:281–85.

    PubMed  CAS  Google Scholar 

  9. Del Porto GB, Derrick FC, Bannister ER. Bacterial effect on sperm motility. Urology 1975;5:638–39.

    Article  PubMed  Google Scholar 

  10. Paulson JD, Polakoski KL. Isolation of a spermatozoal immobilizing factor from Escherichia coli filtrates. Fertil Steril 1977;28:182–85.

    PubMed  CAS  Google Scholar 

  11. Auroux MR, Jacques L, Mathieu D, Auer J. Is the sperm bacterial ratio a determining factor in impairment of sperm motility: an in-vitro study in men with Escherichia coli. Int JAndrol 1991;14:264–70.

    Article  CAS  Google Scholar 

  12. Diemer T, Weidner W, Michelmann HW, Schieffer H-G, Rovan E, Mayer F. Influence of Escherichia coli on motility parameters of human spermatozoa. Int J Androl 1996;19:271–77.

    Article  PubMed  CAS  Google Scholar 

  13. Wolff H, Panhans A, Stolz W, Meurer M. Adherence of Escherichia coli to sperm: a mannose mediated phenomenon leading to agglutination of sperm and E. coli. Fertil Steril 1993;60:154–58.

    CAS  Google Scholar 

  14. Huleihel M, Levy A, Lunenfeld E, Horowitz S, Potashnik G, Glezerman M. Distinct expression of cytokines and mitogenic inhibitory factors in semen of fertile and infertile men. Am J Reprod Immunol 1997;37:304–9.

    Article  PubMed  CAS  Google Scholar 

  15. Naz RK, Chaturvedi MM, Aggarval BB. Role of cytokines and proto-oncogenes in sperm cell function: relevance to immunologic infertility. Am J Reprod Immunol 1994;32:26–37.

    PubMed  CAS  Google Scholar 

  16. Anderson DJ, Hill JA. Cell-mediated immunity in infertility. In: Naz RK, editor. Immunology of reproduction. Boca Raton: CRC Press, 1988:61–80.

    Google Scholar 

  17. Hill JA, Cohen J, Anderson DJ. The effect of lymphokines and monokines on human sperm fertilizing ability in the zona-free hamster penetration test. Am J Obstet Gynecol 1989;160:1154–59.

    PubMed  CAS  Google Scholar 

  18. Naz RK, Kumar R. Transforming growth factor Bl enhances expression of 50 kDa protein related to 2′-5′oligoadenylate synthetase in human sperm cells. J Cell Physiol 1991;146:156–63.

    Article  PubMed  CAS  Google Scholar 

  19. Depuydt CE, Bosman E, Zalata A, Schoonjans F, Comhaire FH. The relation between reactive oxygen species and cytokines in andrological patients with or without male accessory gland infection. JAndrol 1996;17:699–707.

    CAS  Google Scholar 

  20. Buch JP, Kolon TF, Maulik N. Cytokines stimulate lipid membrane peroxidation of human sperm. Fertil Steril 1994;62:186–88.

    PubMed  CAS  Google Scholar 

  21. Naz RK, Kaplan P. Interleukin-6 enhances the fertilizing capacity of human spermatozoa by increasing capacitation and acrosome reaction. JAndrol 1994;15:228–33.

    CAS  Google Scholar 

  22. Gruschwitz MS, Brezinschek R, Brezinschek H-P. Cytokine levels in the seminal plasma of infertile males. J Androl 1996;17:158–63.

    PubMed  CAS  Google Scholar 

  23. Kovalski NN, de Lamirande E, Gagnon C. Reactive oxygen species by human neutro-phils inhibit sperm motility: protective effect of seminal plasma and scavengers. Fertil Steril 1992;58:809–16.

    PubMed  CAS  Google Scholar 

  24. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril 1992;57:409–16.

    PubMed  CAS  Google Scholar 

  25. Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of Superoxide dismutase-and catalase-like activities in seminal plasma and spermatozoa. Int JAndrol 1993;16:183–88.

    Article  CAS  Google Scholar 

  26. Aitken JR, Irvine DS, Wu FC. Prospective analysis of sperm-oocyte fusion and reactive oxygen species generation as criteria for the diagnosis of infertility. Am J Obstet Gynecol 1991;164:542–51.

    PubMed  CAS  Google Scholar 

  27. Aitken JR, Krauz C, Buckingham D. Relationship between biochemical markers for residual sperm cytoplasm, reactive oxygen species generation, and the presence of leukocytes and precursor germ cells in human sperm suspensions. Mol Reprod Dev 1994;39:268–79.

    Article  PubMed  CAS  Google Scholar 

  28. Fisher HM, Aitken JR. Comparative analysis of the ability of precursor germ cells and epididymal spermatozoa to generate reactive oxygen metabolites. Mol Reprod Dev 1997;277:390–400.

    CAS  Google Scholar 

  29. Aitken JR, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl 1988;9:367–76.

    PubMed  CAS  Google Scholar 

  30. Gavella M, Lipovac V, Marotti T. Use of pentoxifylline on Superoxide anion production by human spermatozoa. Int J Androl 1991;14:320–25.

    Article  PubMed  CAS  Google Scholar 

  31. Aitken RJ, Buckingham DW, West KM. Reactive oxygen species and human spermatozoa: analysis of the cellular mechanisms involved in luminol-and lucigenin-depen-dent chemiluminescence. J Cell Physiol 1992;151:466–77.

    Article  PubMed  CAS  Google Scholar 

  32. Weese DL, Peaster ML, Hernandez RD, Leach GE, Laad PM, Zimmern PE. Chemoattractand agents and nerve growth factor stimulate human spermatozoal reactive oxygen species generation. Fertil Steril 1993;59:869–75.

    PubMed  CAS  Google Scholar 

  33. de Lamirande E, Gagnon C. Capacitation-associated production of Superoxide anion by human spermatozoa. Free Radic Biol Med 1995;18:487–95.

    Article  PubMed  Google Scholar 

  34. Plante M, da Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 1994;62:387–93.

    PubMed  CAS  Google Scholar 

  35. Aitken JR, Fisher HM, Fulton N, et al. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoproteins inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev 1997;47:468–82.

    Article  PubMed  CAS  Google Scholar 

  36. Gavella M, Lipovac V. NADH-dependent oxido-reductase (diaphorase) activity and isozyme pattern of sperm in infertile men. Arch Androl 1992;28:135–41.

    Article  PubMed  CAS  Google Scholar 

  37. Wolff HW. The biological significance of white blood cells in semen. Fertil Steril 1995;63:1143–57.

    PubMed  CAS  Google Scholar 

  38. Halliwell B, Gutteridge JMC, editors. Free radicals in biology and medicine, 2nd Edition. Oxford: Clarendon Press, 1989.

    Google Scholar 

  39. Alvarez JG, Storey BT. Taurine, hypotaurine, epinephrine and albumin inhibit lipid peroxidation in rabbit spermatozoa and protect against loss of motility. Biol Reprod 1983;29:548–55.

    Article  PubMed  CAS  Google Scholar 

  40. Chow CK. Vitamin E and oxidative stress. Free Radic Biol Med 1991;11:215–32.

    Article  PubMed  CAS  Google Scholar 

  41. Dawson EB, Harris WA, Teter MC, Powell LC. Effect of ascorbic acid supplementation on the sperm quality of smokers. Fertil Steril 1992;58:1034–39.

    PubMed  CAS  Google Scholar 

  42. Storey BT. Biochemistry of the induction and prevention of lipoperoxidative damage in human spermatozoa. Mol Hum Reprod 1997;3:203–13.

    Article  PubMed  CAS  Google Scholar 

  43. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effect on the motility of intact spermatozoa and on sperm axonemes. J Androl 1992;13:368–78.

    PubMed  Google Scholar 

  44. de Lamirande E, Gagnon C. Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radie Biol Med 1993;14:157–66.

    Article  Google Scholar 

  45. Leclerc P, de Lamirande E, Gagnon C. Regulation of protein tyrosine phosphorylation and human sperm capacitation by reactive oxygen species. Free Radie Biol Med 1997;22:643–65.

    Article  CAS  Google Scholar 

  46. Griveau JF, Renard P, LeLannou D. Superoxide production by human spermatozoa as a part of the ionophore-induced acrosome reaction. Int J Androl 1995;18:67–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gagnon, C., De Lamirande, E. (1999). Extrinsic Factors Affecting Sperm Motility: Immunological and Infectious Factors and Reactive Oxygen Species. In: Hamamah, S., Olivennes, F., Mieusset, R., Frydman, R. (eds) Male Sterility and Motility Disorders. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1522-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1522-6_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7177-2

  • Online ISBN: 978-1-4612-1522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics