Skip to main content

Metabolic Strategy in Human Spermatozoa: Its Impact on Sperm Motility

  • Chapter
Male Sterility and Motility Disorders

Part of the book series: Serono Symposia USA ((SERONOSYMP))

  • 176 Accesses

Abstract

The mammalian spermatozoon must reach the site of fertilization in the oviduct to exert its ultimate biological role of delivering the male haploid DNA complement to the oocyte, thereby producing a pronucleate embryo and a subsequent pregnancy. In order to reach the oviduct in vivo, the sperm cell must be capable both of acquiring its characteristic motility pattern during maturation in the testes and of maintaining this motility pattern during its migration through the female reproductive tract. The capability of the sperm cell to display motion in vitro and in vivo is highly dependent on its ability to generate ATP, which, in turn, is used as the dynein ATPase substrate to transduce chemical energy into mechanical work by the contractile proteins of the flagellum. The ability of the spermatozoon to maintain its motility pattern in vitro and in vivo, therefore, is going to depend both on the normal function of the contractile proteins of the flagellum and its ability to generate ATP but also on the availability of metabolic substrate in the female reproductive tract to produce ATP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Peterson RN, Freund M. Glycolysis by washed suspensions of human spermatozoa. Effect of substrate, substrate concentration and changes in medium composition on the rate of glycolysis. Biol Reprod 1969;1:238–46.

    Article  PubMed  CAS  Google Scholar 

  2. Murdoch RN, White IG. Studies on the metabolism of human spermatozoa. J Reprod Fertil 1968;16:351–61.

    Article  PubMed  CAS  Google Scholar 

  3. Lardy HA, Parks RE. In: Gaehler O, editor. Enzymes: units of biological structure and function. New York: Academic Press, 1956:584–92.

    Google Scholar 

  4. Sarkar S, Nelson AJ, Jones OW. Glucose-6-phosphate dehydrogenase activity in human sperm. J Med Genet 1977;14:250–55.

    Article  PubMed  CAS  Google Scholar 

  5. Murdoch RN, White IG. The metabolism of labeled glucose by rabbit spermatozoa after incubation in vitro. J Reprod Fertil 1967;14:213–23.

    Article  PubMed  CAS  Google Scholar 

  6. Hess B, Brand K. Enzyme and metabolite profiles. In: Chance B, Estabrook RW, Williamson JR, editors. Control of energy metabolism. New York: Academic Press, 1965:111–21.

    Google Scholar 

  7. Newsholme EA, Start C. Regulation of metabolism. New York: John Wiley and Sons, 1973:88–145.

    Google Scholar 

  8. Storey BT, Kayne FJ. Energy metabolism of spermatozoa. V. The Embden-Meyerhof pathway of glycolysis: activities of pathway enzymes in hypotonically-treated rabbit epididymal spermatozoa. Fertil Steril 1975;26:1257–65.

    PubMed  CAS  Google Scholar 

  9. Susor WA, Ratter WJ. Some distinctive properties of pyruvate kinase purified from rat liver. Biochem Biophys Comm 1968;18:527–36.

    Google Scholar 

  10. Carminatti HL, Jiménez de Asúa L, Leiderman B, Rozengurt E. Allosteric properties of skeletal muscle pyruvate kinase. J Biol Chem 1971;246:7284–88.

    PubMed  CAS  Google Scholar 

  11. Seubert W, Schoner W. The regulation of pyruvate kinase. Curr Top Cell Regul 1971;3:237–67.

    CAS  Google Scholar 

  12. Crisp DM, Pogson CI. Glycolytic and gluconeogenic enzyme activities in paren-chymal and nonparenchymal cells from mouse liver. Biochem J 1972;126:1009–23.

    PubMed  CAS  Google Scholar 

  13. Jiménez de Asúa L, Rozengurt E, Devalle JJ, Carminatti H. Some kinetic differences between the M isozymes of pyruvate kinase from liver and muscle. Biochim Biophys Acta 1971;135:326–34.

    Google Scholar 

  14. Imamura K, Taniuchi K, Tanaka T. Multimolecular forms of pyruvate kinase. II. Purification of M2 type pyruvate kinase from Yoshida ascitis hepatoma 130 cells and comparative studies on the enzymological properties of the three types of pyruvate kinase, L, Ml, and M2. J Biochem (Tokyo) 1972;72:1001–15.

    CAS  Google Scholar 

  15. Berglund L, Humble E. Kinetic properties of pig pyruvate kinases type A from kidney and type M from muscle. Arch Biochem Biophys 1979;195:347–61.

    Article  PubMed  CAS  Google Scholar 

  16. Scrutton MC, Utter MF. The regulation of glycolysis and gluconeogenesis in animal tissues. Annu Rev Biochem 1968;37:249–302.

    Article  CAS  Google Scholar 

  17. Kayne FJ. Pyruvate kinase. In: Boyer PD, editor. The enzymes, Vol. 8. New York: Academic Press, 1973:353–82.

    Google Scholar 

  18. Terner C. Oxidation of exogenous substrate by isolated human spermatozoa. Am J Physiol 1960;198:48–50.

    PubMed  CAS  Google Scholar 

  19. Nevo A. Relation between motility and respiration in human spermatozoa. J Reprod Fertil 1966;11:19–26.

    Article  Google Scholar 

  20. Peterson RN, Freund M. Profile of glycolytic enzyme activities in human spermatozoa. Fertil Steril 1970;21:151–58.

    PubMed  CAS  Google Scholar 

  21. Hamner CE, Williams WL. Identification of sperm stimulating factor of rabbit oviduct fluid. Proc Soc Exp Biol Med 1964;117:240–43.

    PubMed  CAS  Google Scholar 

  22. Peterson RN, Freund M. ATP synthesis and oxidative metabolism in human spermatozoa. Biol Reprod 1970;3:47–54.

    PubMed  CAS  Google Scholar 

  23. Peterson RN, Freund M. Glycolysis by human spermatozoa: levels of glycolytic intermediates. Biol Reprod 1971;5:221–27.

    PubMed  CAS  Google Scholar 

  24. Fritz IB, Yue KTN. Long-chain carnitine acyl-transferase and the role of acylcarnitine derivatives in the catalytic increase of fatty acid oxidation induced by carnitine. J Lipid Res 1963;4:279–88.

    PubMed  CAS  Google Scholar 

  25. Bode C, Klingenberg M. Die veratmung von fettsauren in isolierten mitochondrien. BiochemZ 1965;341:271–89.

    CAS  Google Scholar 

  26. Haddock BA, Yates DW, Garland PB. The localization of some coenzyme A dependent enzymes in rat liver mitochondria. Biochem J 1970;119:565–73.

    PubMed  CAS  Google Scholar 

  27. Yates DW, Garland PB. Carnitine palmitoyl-transferase activities of rat liver mitochondria. Biochem J 1970;119:547–52.

    PubMed  CAS  Google Scholar 

  28. Mohri H, Mohri T, Ernster L. Isolation and enzymic properties of the midpiece of bull spermatozoa. Exp Cell Res 1965;38:217–46.

    Article  PubMed  CAS  Google Scholar 

  29. Mohri H, Masaki J. Glycerokinase and its possible role in glycerol metabolism of bull spermatozoa. J Reprod Fertil 1967;14:179–94.

    Article  PubMed  CAS  Google Scholar 

  30. Carey JE, Olds Clark P, Storey BT. Oxidative metabolism of spermatozoa from inbred and random bred mice. J Exp Zool 1981;216:285–92.

    Article  PubMed  CAS  Google Scholar 

  31. Borst P. Hydrogen transport and transport of metabolites. In: Karlson P, editor. Funktionelle und Morphologishe Organization der Zelle. Berlin: Spreinger Verlag, 1963:135–58.

    Google Scholar 

  32. LaNoue KF, Wadajtys El, Williamson JR. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem 1973;248:7171–83.

    PubMed  CAS  Google Scholar 

  33. Saling PM, Storey BT, Wolf DP. Calcium-dependent binding of mouse epididymal spermatozoa to the zona pellucida. DevBiol 1978;65:515–25.

    CAS  Google Scholar 

  34. Heffner LJ, Saling PM, Storey BT. Separation of calcium effects on motility and zona binding ability in mouse spermatozoa. J Exp Zool 1980;212:53–59.

    Article  PubMed  CAS  Google Scholar 

  35. Carey J, Olds-Clark P. Differences in sperm function in vitro but not in vivo between inbred and random-bred mice. Gamete Res 1980;3:9–15.

    Article  Google Scholar 

  36. Hamner C. Oviductal fluid-composition and physiology. In: Greep RO, editor. Handbook of physiology, Section 7 (endocrinology), Vol. 2, Part 2. Washington, DC: American Physiological Society, 1973:141–52.

    Google Scholar 

  37. Brackett BG, Mastroianni L. Composition of oviductal fluid. In: Johnson AD, Foley CW, editors. The oviduct and its functions. New York: Academic Press, 1974:133–59.

    Chapter  Google Scholar 

  38. Blandau RJ, Brackett B, Brenner RM, et al. The oviduct. In: Greep RO, Koblinsky MA, editors. Frontiers in reproduction and fertility control, Part 2. Cambridge MA: MIT Press, 1977:132–45.

    Google Scholar 

  39. Gibbons BH, Gibbons IR. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-100. J Cell Biol 1972;54:75–97.

    Article  PubMed  CAS  Google Scholar 

  40. Keyhani E, Storey BT. Energy conservation capacity and morphological integrity of mitochondria in hypotonically-treated rabbit epididymal spermatozoa. Biochem Biophys Acta 1973a;305:557–69.

    Article  PubMed  CAS  Google Scholar 

  41. Tibbs J. Adenosine triphosphate and acetylcholinesterase in relation to sperm motility. In: Bishop DW, editor. Spermatozoan motility. Washington, D.C.: Am Assoc AdvSci 1962:233–50.

    Google Scholar 

  42. Hayasi M. Kinetic analysis of axoneme and dynein ATPase from sea urchin sperm. Arch Biochem Biophys 1974;165:288–96.

    Article  Google Scholar 

  43. Calvin HI. Isolation and subfractionation of mammalian sperm heads and tails. In: Prescott DM, editor. Methods in cell biology, Vol. 13. New York: Academic Press, 1976:85–104.

    Google Scholar 

  44. Hrudka F. A morphological and cytochemieal study of isolated sperm mitochondria. J Ultrastruct Res 1978;63:1–19.

    Article  Google Scholar 

  45. Osterman J, Fritz PF. Pyruvate kinase isozymes from rat intestinal mucose. Characterization and the effect of fasting and refeeding. Biochemistry 1974;13:1731–36.

    Article  PubMed  CAS  Google Scholar 

  46. Holmdahl TH, Mastroianni L. Continuous collection of rabbit oviduct secretions at low temperature. Fertil Steril 1965;16:587–95.

    PubMed  CAS  Google Scholar 

  47. Alvarez JG, Storey BT. Spontaneous lipid peroxidation in rabbit epididymal spermatozoa. Biol Reprod 1982;27:1102–8.

    Article  PubMed  CAS  Google Scholar 

  48. Holland MK, Alvarez JG, Storey BT. Production of Superoxide and activity of super-oxide dismutase in rabbit epididymal spermatozoa. Biol Reprod 1982;27:1109–18.

    Article  PubMed  CAS  Google Scholar 

  49. Alvarez JG, Holland MK, Storey BT. Spontaneous lipid peroxidation in rabbit spermatozoa: a useful model for the reaction of O2 metabolites with cells. In: Lubbers DW, Acker H, Leninger-Follert E, Goldstick TK, editors. Oxygen transport to tissue-V. New York: Plenum, 1984:433–43.

    Chapter  Google Scholar 

  50. Alvarez JG, Storey BT. Assessment of cell damage caused by spontaneous lipid peroxidation in rabbit spermatozoa. Biol Reprod 1984;30:323–32.

    Article  PubMed  CAS  Google Scholar 

  51. Alvarez JG, Touchstone JC, Blasco L, Storey BT. Spontaneous lipid peroxidation and production of hydrogen peroxide and Superoxide in human spermatozoa. Superoxide dismutase as major enzyme protectant against oxygen toxicity. J Androl 1987;8:338–48.

    PubMed  CAS  Google Scholar 

  52. Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN. Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl AcadSci 1991;88:11003–6.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alvarez, J.G. (1999). Metabolic Strategy in Human Spermatozoa: Its Impact on Sperm Motility. In: Hamamah, S., Olivennes, F., Mieusset, R., Frydman, R. (eds) Male Sterility and Motility Disorders. Serono Symposia USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1522-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1522-6_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7177-2

  • Online ISBN: 978-1-4612-1522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics