Skip to main content

Part of the book series: Progress in Mathematics ((PM,volume 171))

Abstract

We define real-valued characteristic classes of flat complex vector bundles, and flat real vector bundles with a duality structure. We construct pushforwards of such vector bundles with vanishing characteristic classes. These pushforwards involve the analytic torsion form in the first case and the eta form of the signature operator in the second case. We show that the pushforwards are independent of the geometric choices made in the constructions and hence are topological in nature. We give evidence that in the first case, the pushforwards are given topologically by the Becker-Gottlieb-Dold transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Atiyah, The signature of fiber bundles, in Global Analysis, Papers in Honor of K. Kodaira, Princeton University Press, Princeton, NJ, 1969, 73–84.

    Google Scholar 

  2. M. Atiyah, V. Patodi, and I. Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. of Camb. Phil. Soc. 77 (1975), 43–69.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Atiyah and I. Singer, The index of elliptic operators IV, Ann. of Math. 93 (1971), 119–138.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Becker and D. Gottlieb, Transfer maps for fibrations and duality, Compositio Math. 33 (1976), 107–133.

    MathSciNet  MATH  Google Scholar 

  5. N. Berline, E. Getzler, and M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  6. J.-M. Bismut, The index theorem for families of Dirac operators: Two heat equation proofs, Invent. Math. 83 (1986) 91–151.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-M. Bismut and J. Cheeger, η-invariants and their adiabatic limits, J. Amer. Math. Soc. 2 (1989), 33–70.

    MathSciNet  MATH  Google Scholar 

  8. J.-M. Bismut and K. Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Alg. Geom. 1 (1992), 647–684.

    MATH  Google Scholar 

  9. J.-M. Bismut and J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (1995), 291–363.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ec. Norm. Sup. 4ème Sér. 7 (1974), 235–272.

    MathSciNet  MATH  Google Scholar 

  11. A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups and Representations of Reductive Groups, Ann. Math. Stud. 94, Princeton University Press, Princeton, NJ, 1980.

    Google Scholar 

  12. R. Bott and S.-S. Chen, Hermitian vector bundles and the equidistribution of the zeros of their holomorphic sections, Acta Math. 114 (1968), 71–112.

    Article  Google Scholar 

  13. J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. 109 (1979), 259–322.

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Deligne, Le déterminant de la cohomologie, in Current Trends in Arithmetic Algebraic Geometry, Arcata, CA 1985, Contemp. Math. 67, American Mathematical Society, Providence, RI, 1987, 93–177.

    Chapter  Google Scholar 

  15. A. Dold, The fixed point transfer of fiber-preserving maps, Math. Z. 148 (1976), 215–244.

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Dwyer, M. Weiss, and B. Williams, A parametrized index theorem for the algebraic K-theory Euler class, http://www.math.uiuc.edu/K-theory/0086/index.html.

    Google Scholar 

  17. H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with Hermitian metric I, II, Ann. Math. 131 (1990), 163–170, 205–238.

    Google Scholar 

  18. H. Gillet and C. Soulé, Analytic torsion and the arithmetic Todd genus, Topology 30 (1991), 21–54.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Igusa, Parametrized Morse theory and its applications, in Proc. Int. Cong. of Mathematicians, Kyoto, 1990, Math. Soc. of Japan, Tokyo, 1991, 643–651.

    Google Scholar 

  20. M. Karoubi, Homologie cyclique et K-théorie, Astérisque 149 (1987).

    MATH  Google Scholar 

  21. J. Klein, Higher Franz-Reidemeister torsion; Low-dimensional applications, in Mapping Class Groups and Moduli Spaces of Riemann Surfaces, Göttingen 1991/Seattle 1991, Contemp. Math. 150, American Mathematical Society, Providence, RI, 1993, 195–204.

    Chapter  Google Scholar 

  22. J. Lott, R/Z-index theory, Comm. Anal. Geom. 2 (1994), 279–311.

    MathSciNet  MATH  Google Scholar 

  23. J. Lott and M. Rothenberg, Analytic torsion for group actions, J. Dill. Geom. 34 (1991), 431–481.

    MathSciNet  MATH  Google Scholar 

  24. W. Lück and A. Ranicki, Surgery obstructions of fibre bundles, J. Pure Appt. Alg. 81 (1992), 139–189.

    Article  MATH  Google Scholar 

  25. W. Lück and M. Rothenberg, Reidemeister torsion and the K-theory of von Neumann algebras, K-Theory 5 (1991), 213–264.

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Lusztig, Novikov’s higher signature and families of elliptic operators, J. Diff. Geom 7 (1971), 229.

    MathSciNet  Google Scholar 

  27. J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426.

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. Math. 28 (1978), 233–305.

    Article  MATH  Google Scholar 

  29. W. Müller, Analytic torsion and R-torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993), 721–753.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Quillen, Superconnections and the Chern character, Topology 24 (1985), 89–95.

    MathSciNet  MATH  Google Scholar 

  31. D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. Math. 7 (1971), 145–210.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. B. Ray and I. M. Singer, Analytic Torsion for Complex Manifolds, Ann. Math. 98 (1973), 154–177.

    Article  MathSciNet  MATH  Google Scholar 

  33. C. Soulé, D. Abramovich, J.-F. Burnol and J. Kramer, Lectures on Arakelov Geometry, Cambridge University Press, Cambridge, 1992.

    Book  MATH  Google Scholar 

  34. E. Spanier, Algebraic Topology, MacGraw-Hill, New York, 1966.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lott, J. (2000). Secondary Analytic Indices. In: Reznikov, A., Schappacher, N. (eds) Regulators in Analysis, Geometry and Number Theory. Progress in Mathematics, vol 171. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1314-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1314-7_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7089-8

  • Online ISBN: 978-1-4612-1314-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics