Skip to main content

Abstract

A seed enclosing the mature embryo remains in a state of suspended animation until it germinates to herald the active life of the plant. Suspension of growth of the embryo in the seed may be due to physiological states vaguely referred to as either quiescence or dormancy. Quiescent seeds germinate when they are accorded with appropriate environmental conditions such as water, the normal composition of the atmosphere, and a physiologically favorable temperature, whereas dormant seeds require, in addition, specific environmental, hormonal, mechanical, or other cues to trigger germination. A discussion of breaking dormancy of seeds is postponed to a later chapter, but it is important to note here that the onset of germinative growth, whether it follows a quiescent or a dormant state, involves sweeping structural and biochemical changes in the embryo and in the extraembryonal storage tissues of the seed. Models, with molecular overtones, describing the possible biochemical changes have included the synthesis of enzymes that degrade the nutrient reserves of the seed and function in the general metabolism of the embryo. The recommencement of growth of the embryo of a quiescent or a dormant seed is a fine example of developmental regulation attuned to provide a selective advantage for the survival of the species, because germination occurs only when conditions for seedling growth are most propitious.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Caers, L.I., Peumans, W.J., and Carlier, A.R. 1979. Preformed and newly synthesized messenger RNA in germinating wheat embryos. Planta 144: 491–496.

    Article  CAS  Google Scholar 

  • Carlier, A.R., Manickam A., and Peumans, W.J. 1980. Characterization of a maturation-specific mRNA in dry mung bean embryonic axes. Planta 149: 227–233.

    Article  CAS  Google Scholar 

  • Chandler, P.M., Zwar, J.A., Jacobsen, J.V., Higgins, T.J.V., and Inglis, A.S. 1984. The effects of gibberellic acid and abscisic acid on α-amylase mRNA levels in barley aleurone layers: studies using an α-amylase cDNA clone. Plant Mol. Biol. 3: 407–418.

    Article  CAS  Google Scholar 

  • Chen D., Sarid S., and Katchalski, E. 1968. Protein biosynthesis in germinating wheat embryos. Agrochimica 12: 389–397.

    CAS  Google Scholar 

  • Comai L., Dietrich, R.A., Maslyar, D.J., Baden, C.S., and Harada, J.J. 1989. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napusL. Plant Cell 1: 293–300.

    PubMed  CAS  Google Scholar 

  • Comai L., and Harada, J.J. 1990. Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogeny to germination. Proc. Natl. Acad. Sci. U.S.A. 87: 2671–2674.

    Article  PubMed  CAS  Google Scholar 

  • Comai L., Matsudaira, K.L., Heupel, R.C., Dietrich, R.A., and Harada, J.J. 1992. Expression of a Brassica napusmalate synthase gene in transgenic tomato plants during the transition from late embryogeny to germination. Plant Physiol. 98: 53–61.

    Article  PubMed  CAS  Google Scholar 

  • Deltour, R. 1970. Synthèse et translocation de RNA dans cellules radiculaires de Zea maysau début de la germination. Planta 92: 235–239.

    Article  CAS  Google Scholar 

  • Deltour, R. 1985. Nuclear activation during early germination of the higher plant embryo, J. Cell Sci. 75: 43–83.

    PubMed  CAS  Google Scholar 

  • Dure L., III, Greenway, S.C., and Galau, G.A. 1981. Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochemistry 20: 4162–4168.

    Article  PubMed  CAS  Google Scholar 

  • Dure L., and Waters, L. 1965. Long-lived messenger RNA: evidence from cotton seed germination. Science 147: 410–412.

    Article  PubMed  CAS  Google Scholar 

  • Elder, R.H., Del“Aquila R., Mezzina M., Sarasin A., and Osborne, D.J. 1987. DNA ligase in repair and replication in embryos of rye, Secale cereale. Mutation Res. 181: 61–71.

    Article  CAS  Google Scholar 

  • Filner P., and Varner, J.E. 1967. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley α-amylase induced by gibberellic acid. Proc. Natl. Acad. Sci. U.S.A. 58: 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S., and Jones, R.L. 1992. Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secretory activity in barley aleurone protoplasts. Proc. Natl. Acad. Sci. U.S.A. 89: 3591–3595.

    Article  PubMed  CAS  Google Scholar 

  • Gilroy S., and Jones, R.L. 1993. Calmodulin stimulation of unidirectional calcium uptake by the endoplasmic reticulum of barley aleurone. Planta 190: 289–296.

    Article  CAS  Google Scholar 

  • Gordon, M.E., and Payne, P.I. 1976. In vitro translation of the long-lived messenger ribonucleic acid of dry seeds. Planta 130: 269–273.

    Article  CAS  Google Scholar 

  • Graham, I.A., Smith, L.M., Leaver, C.J., and Smith, S.M. 1990. Developmental regulation of expression of the malate synthase gene in transgenic plants. Plant Mol. Biol. 15: 539–549.

    Article  PubMed  CAS  Google Scholar 

  • Grellet, E, Delseny M., and Guitton, Y. 1977. Histone content of germinating pea embryo chromatin decreases as DNA replicates. Nature 267: 724–726.

    Article  PubMed  CAS  Google Scholar 

  • Gubler F., and Jacobsen, J.V. 1992. Gibberellin-responsive elements in the promoter of a barley high-pI α-amylase gene. Plant Cell 4: 1435–1441.

    PubMed  CAS  Google Scholar 

  • Haber, A.H., Carrier, W.L., and Foard, D.L. 1961. Metabolic studies of gamma-irradiated wheat growing without cell division. Am. J. Bot. 48: 431–438.

    Article  CAS  Google Scholar 

  • Higgins, T.J.V., Zwar, J.A., and Jacobsen, J.V. 1976. Gibberellic acid enhances the level of translatable mRNA for α-amylase in barley aleurone layers. Nature 260: 166–169.

    Article  CAS  Google Scholar 

  • Ho, D.T.-H., and Varner, J.E. 1971. Hormonal control of messenger ribonucleic acid metabolism in barley aleurone layers. Proc. Natl. Acad. Sci. U.S.A. 71: 4783–4786.

    Article  Google Scholar 

  • Huttly, A.K., and Baulcombe, D.C. 1989. A wheat α-amy2 promoter is regulated by gibberellin in transformed oat aleurone protoplasts. EMBO J. 8: 1907–1913.

    PubMed  CAS  Google Scholar 

  • Ihle, J.N., and Dure L., III. 1969. Synthesis of a protease in germinating cotton cotyledons catalyzed by mRNA synthesized during embryogenesis. Biochem. Biophys. Res. Commun. 36: 705–710.

    Article  PubMed  CAS  Google Scholar 

  • Ihle, J.N., and Dure, L.S., III. 1972. The developmental biochemistry of cottonseed embryogenesis and germination. III. Regulation of the biosynthesis of enzymes utilized in germination, J. Biol. Chem. 247: 5048–5055.

    PubMed  CAS  Google Scholar 

  • Jacobsen, J.V., and Beach, L.R. 1985. Control of transcription of α-amylase and rRNA genes in barley aleurone protoplasts by gibberellin and abscisic acid. Nature 316: 275–277.

    Article  CAS  Google Scholar 

  • Jacobsen, J.V, and Close, T.J. 1991. Control of transient expression of chimaeric genes by gibberellic acid and abscisic acid in protoplasts prepared from mature barley aleurone layers. Plant Mol. Biol. 16: 713–724.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, J.V, and Higgins, T.J.V. 1982. Characterization of the α-amylases synthesized by aleurone layers of Himalaya barley in response to gibberellic acid. Plant Physiol. 70: 1647–1653.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen, J.V, and Zwar, J.A. 1971. Gibberellic acid causes increased synthesis of RNA which contains poly(A) in barley aleurone tissue. Proc. Natl. Acad. Sci. U.S.A. 71: 3290–3293.

    Article  Google Scholar 

  • Jones, R.L., and Jacobsen, J.V. 1991. Regulation of synthesis and transport of secreted proteins in cereal aleurone. Int. Rev. Cytol. 126: 49–88.

    Article  PubMed  CAS  Google Scholar 

  • Koshiba, T, Tomura H., and Miura, M. 1986. Changes in mRNA of Vigna mungo cotyledons during seed germination. Plant Cell Physiol. 27: 1069–1080.

    CAS  Google Scholar 

  • Laroche-Raynal M., Aspart L., Delseny M., and Penon, P. 1984. Characterization of radish mRNA at three developmental stages. Plant Sci. Lett. 35: 139–146.

    Article  CAS  Google Scholar 

  • Lin, L.-S., and Ho, T.-H.D. 1986. Mode of action of abscisic acid in barley aleurone layers. Induction of new proteins by abscisic acid. Plant Physiol. 82: 289–297.

    Article  PubMed  CAS  Google Scholar 

  • Marcus, A. 1969. Seed germination and the capacity for protein synthesis. Symp. Soc. Exp. Biol. 23: 143–160.

    PubMed  CAS  Google Scholar 

  • McFadden, G.I., Ahluwalia B., Clarke, A.E., and Fincher, G.B. 1988. Expression sites and developmental regulation of genes encoding (l→3,l→4)-β-glucanases in germinating barley. Planta 173: 500–508.

    Article  CAS  Google Scholar 

  • Misra S., and Bewley, J.D. 1985. The messenger RNA population in the embryonic axes of Phaseolus vulgaris during development and following germination, J. Exp. Bot. 36: 1644–1652.

    Article  CAS  Google Scholar 

  • Mundy J., and Rogers, J.C. 1986. Selective expression of a probable amylase/protease inhibitor in barley aleurone cells: comparison to the barley amylase/subtilisininhibitor. Planta 169: 51–63.

    Article  CAS  Google Scholar 

  • Muthukrishnan S., Chandra, G.R., and Maxwell, E.S. 1979. Hormone-induced increase in levels of functional mRNA in barley aleurones. Proc. Natl. Acad. Sci. U.S.A. 76: 6181–6185.

    Article  PubMed  CAS  Google Scholar 

  • Muthukrishnan S., Chandra, G.R., and Maxwell, E.S. 1983. Hormonal control of α-amylase gene expression in barley. Studies using a cloned cDNA probe. J. Biol. Chem. 258: 2370–2375.

    PubMed  CAS  Google Scholar 

  • Ou-Lee, T.-M., Turgeon R., and Wu, R. 1988. Interaction of a gibberellin-induced factor with the upstream region of an α-amylase gene in rice aleurone tissue. Proc. Natl. Acad. Sci. U.S.A. 85: 6366–6369.

    Article  PubMed  CAS  Google Scholar 

  • Payne, J.F., and Bal, A.K. 1972. RNA polymerase activity in germinating onion seeds. Phytochemistry 11: 3105–3110.

    Article  CAS  Google Scholar 

  • Payne, P.I. 1976. The long-lived messenger ribonucleic acid of flowering-plant seeds. Biol. Rev. 51: 329–363.

    Article  CAS  Google Scholar 

  • Peumans, W.J., Stinissen H.M., and Carlier, A.R. 1982. Lectin synthesis in developing and germinating wheat and rye embryos. Planta 156: 41–44.

    Article  CAS  Google Scholar 

  • Ramachandran C., and Raghavan, V. 1992. Regulation of gene expression during rice grain development and germination. Trans. Malaysian Soc. Plant Physiol. 3: 217–227.

    Google Scholar 

  • Ranjhan S., Karrer, E.E., and Rodriguez, R.L. 1992. Localizing α-amylase gene expression in germinated rice grains. Plant Cell Physiol. 33: 73–79.

    CAS  Google Scholar 

  • Raynal M., Depigny D., Cooke R., and Delseny, M. 1989. Characterization of a radish nuclear gene expressed during late seed maturation. Plant Physiol. 91: 829–836.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, J.C. 1985. Two barley α-amylase gene families are regulated differently in aleurone cells, J. Biol. Chem. 260: 3731–3738.

    PubMed  CAS  Google Scholar 

  • Rogers, J.C., and Milliman, C. 1983. Isolation and sequence analysis of a barley α-amylase cDNA clone. J. Biol. Chem. 258: 8169–8174.

    PubMed  CAS  Google Scholar 

  • Rogers, J.C., and Rogers, S.W. 1992. Definition and functional implications of gibberellin and abscisic acid cisacting hormone response complexes. Plant Cell 4: 1443–1451.

    PubMed  CAS  Google Scholar 

  • Rushton, P.J., Hooley R., and Lazarus, C.M. 1992. Aleurone nuclear proteins bind to similar elements in the promoter regions of two gibberellin-regulated α-amylase genes. Plant Mol. Biol. 19: 891–901.

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Martínez D., Puigdomènech P., and Pagès, M. 1986. Regulation of gene expression in developing Zea mays embryos. Protein synthesis during embryogenesis and early germination of maize. Plant Physiol. 82: 543–549.

    Article  PubMed  Google Scholar 

  • Sen S., Payne, P.I., and Osborne, D.J. 1975. Early ribonucleic acid synthesis during the germination of rye (Secale cereale) embryos and the relationship to early protein synthesis. Biochem. J. 148: 381–387.

    PubMed  CAS  Google Scholar 

  • Shain Y., and Mayer, A.M. 1968. Activation of enzymes during germination: amylopectin-l,6-glucosidase in peas. Physiol. Plant. 21: 765–776.

    Article  CAS  Google Scholar 

  • Smith, S.M., and Leaver, C.J. 1986. Glyoxysomal malate synthase of cucumber: molecular cloning of a cDNA and regulation of enzyme synthesis during germination. Plant Physiol. 81: 762–767.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel S., and Marcus, A. 1975. Polyribosome formation in early wheat embryo germination independent of either transcription or polyadenylation. Nature 256: 228–230.

    Article  CAS  Google Scholar 

  • Sugita M., and Sasaki, K. 1982. Transcriptional activation and structural alteration of wheat chromatin during germination and seedling-growth. Physiol. Plant. 54: 41–46.

    Article  CAS  Google Scholar 

  • Thompson, E.W., and Lane, B.G. 1980. Relation of protein synthesis in imbibing wheat embryos to the cell-free translational capacities of bulk mRNA from dry and imbibing embryos. J. Biol. Chem. 255: 5965–597

    PubMed  CAS  Google Scholar 

  • Varner, J.E., and Chandra, G.R. 1964. Hormonal control of enzyme synthesis in barley endosperm. Proc. Natl. Acad. Sci. U.S.A. 52: 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Walbot, V. 1971. RNA metabolism during embryo development and germination of Phaseolus vulgaris. Dev. Biol. 26: 369–379.

    Article  PubMed  CAS  Google Scholar 

  • Walbot V., Capdevila A., and Dure, L.S., III. 1974. Actions of 3’d adenosine (cordycepin) and 3’d cytidine on the translation of the stored mRNA of cotton cotyledons. Biochem. Biophys. Res. Commun. 60: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Waters, L.C., and Dure, L.S., III. 1966. Ribonucleic acid synthesis in germinating cotton seeds, J. Mol. Biol. 19: 1–27.

    Article  PubMed  CAS  Google Scholar 

  • Weir, E.M., Riezman H., Grienenberger, J.-M., Becker, W.M., and Leaver, C.J. 1980. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur. J. Biochem. 112: 469–477.

    Article  PubMed  CAS  Google Scholar 

  • Zwar, J.A., and Jacobsen, J.V. 1972. A correlation between a ribonucleic acid fraction selectively labeled in the presence of gibberellic acid and amylase synthesis in barley aleurone layers. Plant Physiol. 49: 1000–1006.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raghavan, V. (2000). Seed Germination. In: Developmental Biology of Flowering Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1234-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1234-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7054-6

  • Online ISBN: 978-1-4612-1234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics