Skip to main content

Pollen-Pistil Interactions and Fertilization

  • Chapter
Developmental Biology of Flowering Plants

Abstract

In spite of the broad range in size, shape, and exine patterns displayed by pollen grains of flowering plants, mature pollen released from the anther face common problems in accomplishing their goal of delivering the sperm cells to the vicinity of the egg for fertilization. The initial problem involves the transfer of pollen grains from the anther to the stigma of the same flower or another flower on the same or a different plant of the same species in the act of pollination. Successful fertilization is the tangible evidence of completion of a series of subtle and complex processes from the time pollen grains land on the stigma. Nurtured by the nutrient substances of the stigmatic exudate, pollen grains germinate and the pollen tubes produced travel through the stylar matrix to reach the ovary, seek out an ovule, and appear in the embryo sac where the sperm cells are discharged. These events collectively embody pollen-pistil interactions, or the progamic phase. In the embryo sac, one of the two sperm cells fuses with the egg to form the zygote, and the second sperm fuses with the diploid polar fusion nucleus to form the primary endosperm nucleus. The occurrence of two fusion events involving both sperm cells constitutes what is known in the popular jargon as double fertilization, although true fertilization is represented by the union of the egg and the sperm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Franklin-Tong, V.E., and Franklin, F.C.H. 1993. Gameto-phytic self-incompatibility: contrasting mechanisms for Nicotianaand Papaver. Trends Cell Biol 3: 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Kranz E., and Kumlehn, J. 1999. Angiosperm fertilisation, embryo and endosperm development in vitro. Plant Sci. 142: 183–197.

    Article  CAS  Google Scholar 

  • Thompson, R.D., and Kirch, H.-H. 1992. The S locus of flowering plants: when self-rejection is self-interest. Trends Genet. 8: 381–387.

    PubMed  CAS  Google Scholar 

  • Wilhelmi, L.K., and Preuss, D. 1997. Blazing new trails. Pollen tube guidance in flowering plants. Plant Physiol. 113: 307–312.

    PubMed  CAS  Google Scholar 

References

  • Aarts, M.G.M., Keijzer, C.J., Stiekema, W.J., and Pereira, A. 1995. Molecular characterization of the CER1gene of Arabidopsisinvolved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7: 2115–2127.

    PubMed  CAS  Google Scholar 

  • Anderson, M.A., McFadden, G.I., Bernatzky R., Atkinson A., Orpin T., Dedman H., Tregear G., Fernley R., and Clarke, A.E. 1989. Sequence variability of three alleles of the self-incompatibility gene of Nicotiana alata. Plant Cell 1: 483–491.

    PubMed  CAS  Google Scholar 

  • Brewbaker, J.L. 1957. Pollen cytology and self-incompatibility systems in plants. J. Hered. 48: 271–277.

    Google Scholar 

  • Chaubal R., and Reger, B.J. 1990. Relatively high calcium is localized in synergid cells of wheat ovaries. Sex. Plant Reprod. 3: 98–102.

    Article  Google Scholar 

  • Cheung, A.Y., Wang H., and Wu, H.-M. 1995. A floral transmitting tissue-specific glycoprotein attracts pollen tubes and stimulates their growth. Cell 82: 383–393.

    Article  PubMed  CAS  Google Scholar 

  • Clark, K.R., Okuley, J.J., Collins, P.D., and Sims, T.L. 1990. Sequence variability and developmental expression of S-alleles in self-incompatible and pseudo-self-compatible Petunia. Plant Cell 2: 815–826.

    PubMed  CAS  Google Scholar 

  • Clarke A., Gleeson P., Harrison S., and Knox, R.B. 1979. Pollen-stigma interactions: identification and characterization of surface components with recognition potential. Proc. Natl. Acad. Sci. U.S.A. 76: 3358–3362.

    Article  PubMed  CAS  Google Scholar 

  • Cornish, E.C., Pettitt, J.M., Bonig I., and Clarke, A.E. 1987. Developmentally controlled expression of a gene associated with self-incompatibility in Nicotiana alata. Nature 326: 99–102.

    Article  CAS  Google Scholar 

  • de Nettancourt, D., Devreux M., Bozzini A., Cresti M., Pacini E., and Sarfatti, G. 1973. Ultrastructural aspects of the self-incompatibility mechanism in Lycopersicum peruvianumMill. J. Cell Sci. 12: 403–419.

    PubMed  Google Scholar 

  • de Nettancourt, D., Devreux M., Laneri U., Cresti M., Pacini E., and Sarfatti, G. 1974. Genetical and ultrastructural aspects of self and cross incompatibility in interspecific hybrids between self-compatible Lycopersicum esculentumand self-incompatible L. peruvianum. Theor. Appl. Genet. 44: 278–288.

    Google Scholar 

  • Dearnaley, J.D.W., Levina, N.N., Lew, R.R., Heath, LB., and Goring, D.R. 1997. Interrelationships between cytoplasmic Ca2+ peaks, pollen hydration and plasma membrane conductances during compatible and incompatible pollinations of Brassica napuspapillae. Plant Cell Physiol 38: 985–999.

    Article  PubMed  CAS  Google Scholar 

  • Dickinson, H.G., and Lewis, D. 1973a. Cytochemical and ultrastructural differences between intraspecific compatible and incompatible pollinations in Raphanus. Proc. Roy. Soc. Lond. 183B: 21–38.

    Article  Google Scholar 

  • Dickinson, H.G., and Lewis, D. 1973b. The formation of the tryphine coating the pollen grains of Raphanus, and its properties relating to the self-incompatibility systems. Proc. Roy. Soc. Lond. 184B: 149–165.

    Article  Google Scholar 

  • Digonnet, C, Aldon D., Leduc N., Dumas, C, and Rougier, M. 1997. First evidence of a calcium transient in flowering plants at fertilization. Development 124: 2867–2874.

    PubMed  CAS  Google Scholar 

  • Dodds, P.N., Bönig, I., Du, H., Rödin, J., Anderson, M.A., Newbigin, E., and Clarke, A.E. 1993. S-RNase gene of Nicotiana alatais expressed in developing pollen. Plant Cell 5: 1771–1782.

    PubMed  CAS  Google Scholar 

  • Doughty J., Dixon S., Hiscock, S.J., Willis, A.C., Parkin, I.A.P., and Dickinson, H.G. 1998. PCP-A1, a defensinlike Brassicapollen coat protein that binds the S locus glycoprotein, is the product of gametophytic gene expression. Plant Cell 10: 1333–1347.

    PubMed  CAS  Google Scholar 

  • Faure, J.-E., Digonnet, C, and Dumas, C. 1994. An in vitro system for adhesion and fusion of maize gametes. Science 263: 1598–1600.

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong, V.E., Lawrence, M J., and Franklin, F.C.H. 1990. Self-incompatibility in Papaver rhoeasL.: inhibition of incompatible pollen tube growth is dependent on pollen gene expression. New Phytol. 116: 319–324.

    Article  CAS  Google Scholar 

  • Franklin-Tong, V.E., Ride, J.P., and Franklin, F.C.H. 1995. Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca2+ transient in pollen of Papaver rhoeas. Plant J. 8: 299–307.

    Article  CAS  Google Scholar 

  • Franklin-Tong, V.E., Ride, J.P., Read, N.D., Trewavas, A J., and Franklin, F.C.H. 1993. The self-incompatibility response in Papaver rhoeasis mediated by cytosolic free calcium. Plant J. 4: 163–177.

    Article  CAS  Google Scholar 

  • Gleeson, P.A., and Clarke, A.E. 1979. Structural studies on the major component of Gladiolusstyle mucilage, arabinogalactan-protein. Biochem. J. 181: 607–621.

    PubMed  CAS  Google Scholar 

  • Goldman, M.H.S., Goldberg, R.B., and Mariani, C. 1994. Female sterile tobacco plants are produced by stigma-specific cell ablation. EMBO J. 13: 2976–2984.

    PubMed  CAS  Google Scholar 

  • Heslop-Harrison, Y. 1977. The pollen-stigma interaction: pollen-tube penetration in Crocus. Ann. Bot. 41: 913–922.

    Google Scholar 

  • Higgins, R.K., and Petolino, J.F. 1988. In vitro pollination fertilization of maize: influence of explant factors on kernel development. Plant Cell Tissue Organ Cult. 12: 21–30.

    Article  Google Scholar 

  • Hiscock, S.J., Doughty, J., and Dickinson, H.G. 1995. Synthesis and phosphorylation of pollen proteins during the pollen-stigma interaction in self-compatible Brassica napusL. and self-incompatible Brassica oleraceaL. Sex. Plant Reprod. 8: 345–353.

    Article  Google Scholar 

  • Hoggart, R.M., and Clarke, A.E. 1984. Arabinogalactans are common components of angiosperm styles. Photochemistry 23: 1571–1573.

    Article  CAS  Google Scholar 

  • Huang, B.-Q., Pierson, E.S., Russell, S.D., Tiezzi A., and Cresti, M. 1993. Cytoskeletal organisation and modification during pollen tube arrival, gamete delivery and fertilisation in Plumbago zeylanica. Zygote 1: 143–154.

    Article  PubMed  CAS  Google Scholar 

  • Huang S., Lee, H.-S., Karunanandaa B., and Kao, T.-H. 1994. Ribonuclease activity of Petunia inflataS proteins is essential for rejection of self-pollen. Plant Cell 6: 1021–102

    PubMed  CAS  Google Scholar 

  • Hülskamp, M, Kopczak, S.D., Horejsi, T.F., Kihl, B.K., and Pruitt, R.E. 1995. Identification of genes required for pollen-stigma recognition in Arabidopsis thaliana. Plant J. 8: 703–714.

    Article  PubMed  Google Scholar 

  • Hülskamp M., Schneitz K., and Pruitt, R.E. 1995. Genetic evidence for a long-range activity that directs pollen tube guidance in Arabidopsis. Plant Cell 7: 57–64.

    PubMed  Google Scholar 

  • Ikeda S., Nasrallah, J.B., Dixit R., Preiss S., and Nasrallah, M.E. 1997. An aquaporin-like gene required for the Brassicaself-incompatibility response. Science 276: 1564–1566.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, W.A., and Fisher, D.B. 1968. Cotton embryogene-sis: the entrance and discharge of the pollen tube in the embryo sac. Planta 78: 158–183.

    Article  Google Scholar 

  • Kandasamy, M.K., Dwyer, K.G., Paolillo, D J., Doney, R.C., Nasrallah, J.B., and Nasrallah, M.E. 1990. BrassicaS-proteins accumulate in the intercellular matrix along the path of pollen tubes in transgenic tobacco pistils. Plant Cell 2: 39–49.

    PubMed  CAS  Google Scholar 

  • Kandasamy, M.K., Nasrallah, J.B., and Nasrallah, M.E. 1994. Pollen-pistil interactions and developmental regulation of pollen tube growth in Arabidopsis. Development 120: 3405–3418.

    CAS  Google Scholar 

  • Kanta, K. 1960. Intra-ovarian pollination in Papaver rhoeasL. Nature 188: 683–684.

    Article  Google Scholar 

  • Kanta K., Ranga Swamy, N.S., and Maheshwari, P. 1962. Test-tube fertilization in a flowering plant. Nature 194: 1214–1217.

    Article  Google Scholar 

  • Knox, R.B., Clarke, A., Harrison S., Smith P., and Marchalonis, J.J. 1976. Cell recognition in plants: determinants of the stigma surface and their pollen interactions. Proc. Natl Acad. Sci. U.S.A. 73: 2788–2792.

    Article  PubMed  CAS  Google Scholar 

  • Kranz E., and Lörz, H. 1993. In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5: 739–746.

    PubMed  Google Scholar 

  • Lalonde, B.A., Nasrallah, M.E., Dwyer, K.G., Chen, C.-H., Barlow, B., and Nasrallah, J.B. 1989. A highly conserved Brassicagene with homology to the S-locus-specific glycoprotein structural gene. Plant Cell 1: 249–258.

    PubMed  CAS  Google Scholar 

  • Lee, H.-S., Huang, S., and Kao, T.-H. 1994. S proteins control rejection of incompatible pollen in Petunia inflata. Nature 367: 560–563.

    Article  PubMed  CAS  Google Scholar 

  • Lind, J.L., Bacic, A., Clarke, A..E., and Anderson, M.A. 1994. A style-specific hydroxyproline-rich glycoprotein with properties of both extensins and arabinogalactan proteins. Plant J. 6: 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Lind, J.L., Bönig, I., Clarke, A.E., and Anderson, M.A. 1996. A style-specific 120-kDa glycoprotein enters pollen tubes of Nicotiana alatain vivo. Sex. Plant Reprod. 9: 75–86.

    Article  Google Scholar 

  • Lolle, S.J., Berlyn, G.P., Engstrom, E.M., Krolikowski, K.A., Reiter, W.-D., and Pruitt, R.E. 1997. Developmental regulation of cell interactions in the Arabidopsis fiddlehead-1mutant: a role for the epidermal cell wall and cuticle. Dev. Biol. 189: 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Lolle, S.J., and Cheung, A.Y. 1993. Promiscuous germination and growth of wildtype pollen from Arabidopsisand related species on the shoot of the Arabidopsismutant, fiddlehead. Dev. Biol. 155: 250–258.

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas, J.P., and Machlis, L. 1962. Chemotropic response of Antirrhinum majuspollen to calcium. Nature 196: 292–293.

    Article  CAS  Google Scholar 

  • Mattsson O., Knox, R.B., Heslop-Harrison, J., and Heslop-Harrison, Y. 1974. Protein pellicle of stigmatic papillae as a probable recognition site in incompatibility reactions. Nature 247: 298–300.

    Article  Google Scholar 

  • McClure, B.A., Gray, J.E., Anderson, M.A., and Clarke, A.E. 1990. Self-incompatibility in Nicotiana alatainvolves degradation of pollen rRNA. Nature 347: 757–760.

    Article  CAS  Google Scholar 

  • McClure, B.A., Haring, V., Ebert, PR., Anderson, M.A., Simpson, R.J., Sukiyama, E, and Clarke, A.E. 1989. Style self-incompatibility gene products of Nicotiana alataare ribonucleases. Nature 342: 955–957.

    Article  PubMed  CAS  Google Scholar 

  • Mo Y., Nagel, C, and Taylor, L.P 1992. Biochemical complementation of chalcone synthase mutants defines a role for flavonols in functional pollen. Proc. Natl. Acad. Sci. U.S.A. 89: 7213–7217.

    Article  PubMed  CAS  Google Scholar 

  • Murfett J., Atherton, T.L., Mou, B., Gasser, C.S., and McClure, B.A. 1994. S-RNase expressed in transgenic Nicotianacauses S-allele-specific pollen rejection. Nature 367: 563–566.

    Article  PubMed  CAS  Google Scholar 

  • Murfett J., Bourque, J.E., and McClure, B.A. 1995. Antisense suppression of S-RNase expression in Nicotianausing RNA polymerase II-and III-transcribed gene constructs. Plant Mol. Biol. 29: 201–212.

    Article  PubMed  CAS  Google Scholar 

  • Murfett J., Cornish, E.C., Ebert, PR., Bönig, I., McClure, B.A., and Clarke, A.E. 1992. Expression of self-incompatibility glycoprotein (S2-ribonuclease) from Nicotiana alatain transgenic Nicotiana tabacum. Plant Cell 4: 1063–1074.

    PubMed  CAS  Google Scholar 

  • Nasrallah, J.B., Kao, T.-H., Chen, C.-H., Goldberg, M.L., and Nasrallah, M.E. 1987. Amino-acid sequence of glycoproteins encoded by three alleles of the S locus of Brassica oleracea. Nature 326: 617–619.

    Article  CAS  Google Scholar 

  • Nasrallah, J.B., Stein, J.C., Kandasamy, M.K., and Nasrallah, M.E. 1994. Signaling the arrest of pollen tube development in self-incompatible plants. Science 266: 1505–1508.

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah, J.B., Yu, S.-M., and Nasrallah, M.E. 1988. Self-incompatibility genes of Brassica oleracea:expression, isolation, and structure. Proc. Natl. Acad. Sci. U.S.A. 85: 5551–5555.

    Article  PubMed  CAS  Google Scholar 

  • Nasrallah, M.E. 1974. Genetic control of quantitative variation in self-incompatibility proteins detected by immunodiffusion. Genetics 76: 45–50.

    PubMed  CAS  Google Scholar 

  • Nasrallah, M.E., Wallace, D.H., and Savo, R.M. 1972. Genotype, protein, phenotype relationships in self-incompatibility of Brassica. Genet. Res. 20: 151–160.

    Article  Google Scholar 

  • Nishio T., Toriyama K., Sato, T, Kandasamy, M.K., Paolillo, D.J., Nasrallah, J.B., and Nasrallah, M.E. 1992. Expression of S-locus glycoprotein genes from Brassica oleraceaand B. campestrisin transgenic plants of self-compatible B. napuscv. Westar. Sex. Plant Reprod. 5: 101–109.

    Google Scholar 

  • Preuss D., Lemieux B., Yen G., and Davis, R.W. 1993. A conditional sterile mutation eliminates surface components from Arabidopsispollen and disrupts cell signaling during fertilization. Genes Dev. 7: 974–985.

    Article  PubMed  CAS  Google Scholar 

  • Raghavan, V. 1997. Molecular Embryology of Flowering Plants. Cambridge: Cambridge University Press

    Google Scholar 

  • Rangaswamy N.S. and Shivanna K.R. 1971. Overcoming self-incompatibility in Petunia axillaris.II. Placental pollination in vitro. J. Indian Bot. Soc. 50A 286–296

    Google Scholar 

  • Ray S., Park, S.-S., and Ray, A. 1997. Pollen tube guidance by the female gametophyte. Development 124: 2489–2498.

    PubMed  CAS  Google Scholar 

  • Rudd, J.J., Franklin, F.C.H., Lord, J.M., and Franklin-Tong, V.E. 1996. Increased phosphorylation of a 26-kD pollen protein is induced by the self-incompatibility response in Papaver rhoeas. Plant Cell 8: 713–724.

    PubMed  CAS  Google Scholar 

  • Russell, S.D. 1983. Fertilization in Plumbago zeylanica:gametic fusion and fate of the male cytoplasm. Am. J. Bot. 70: 416–434.

    Article  Google Scholar 

  • Russell, S.D. 1985. Preferential fertilization in Plumbago:ultrastructural evidence for gamete-level recognition in an angiosperm. Proc. Natl. Acad. Sci. U.S.A. 82: 6129–61

    Article  PubMed  CAS  Google Scholar 

  • Sanders, L.C., and Lord, E.M. 1989. Directed movement of latex particles in the gynoecia of three species of flowering plants. Science 243: 1606–1608.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, L.C., Wang, C.-S., Walling, L.L., and Lord, E.M. 1991. A homolog of the substrate adhesion molecule vitronectin occurs in four species of flowering plants. Plant Cell 3: 629–635.

    PubMed  CAS  Google Scholar 

  • Shivanna, K.R., Heslop-Harrison, Y, and Heslop-Harrison, J. 1978. The pollen-stigma interaction: bud pollination in the Cruciferae. Acta Bot. Neerl. 27: 107–119.

    Google Scholar 

  • Stein, J.C., Dixit, R., Nasrallah, M.E., and Nasrallah, J.B. 1996. SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. Plant Cell 8: 429–445.

    PubMed  CAS  Google Scholar 

  • Stein, J.C, Howlett, B., Boyes, D.C., Nasrallah, M.E., and Nasrallah, J.B. 1991. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc. Natl. Acad. Sci. U.S.A. 88: 8816–8820.

    Article  PubMed  CAS  Google Scholar 

  • Thorsness, M.K., Kandasamy, M.K., Nasrallah, M.E., and Nasrallah, J.B. 1993. Genetic ablation of floral cells in Arabidopsis. Plant Cell 5: 253–2

    PubMed  CAS  Google Scholar 

  • Vithanage, H.I.M.V., Gleeson, P.A., and Clarke, A..E. 1980. The nature of callose produced during self-pollination in Secale cereale. Planta 148: 498–509.

    CAS  Google Scholar 

  • Wang H., Wu, H.-M., and Cheung, A.Y 1993. Development and pollination-regulated accumulation and glycosylation of a stylar transmitting tissue-specific proline-rich protein. Plant Cell 5: 1639–1650.

    PubMed  CAS  Google Scholar 

  • Wilhelmi, L.K., and Preuss, D. 1996. Self-sterility in Arabidopsisis due to defective pollen tube guidance. Science 274: 1535–1537.

    Article  PubMed  CAS  Google Scholar 

  • Wolters-Arts, M., Lush, W.M., and Mariani, C. 1998. Lipids are required for directional pollen-tube growth. Nature 392: 818–82

    Article  PubMed  CAS  Google Scholar 

  • Wu, H.-M., Wang, H., and Cheung, A.Y 1995. A pollen tube growth stimulatory glycoprotein is deglycosylated by pollen tubes and displays a glycosylation gradient in the flower. Cell 82: 395–403.

    Article  PubMed  CAS  Google Scholar 

  • Ylstra B., Busscher J., Franken J., Hollman, P.C.H., Mol, J.N.M., and van Tunen, A.J. 1994. Flavonols and fertilization in Petunia hybrida:localization and mode of action during pollen tube growth. Plant J. 8: 201–212.

    Article  Google Scholar 

  • Zhu, T, Mogensen, H.L., and Smith, S.E. 1991. Quantitative cytology of the alfalfa generative cell and its relation to male plastid inheritance patterns in three genotypes. Theor. Appl. Genet. 81: 21–26.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Raghavan, V. (2000). Pollen-Pistil Interactions and Fertilization. In: Developmental Biology of Flowering Plants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1234-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1234-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7054-6

  • Online ISBN: 978-1-4612-1234-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics