Skip to main content

Lipids in Water-Surface Microlayers and Foams

  • Chapter
Lipids in Freshwater Ecosystems

Abstract

The water-surface microlayers of lakes and streams are unique environments with a different chemical composition and physical properties from the underlying water. The surface layer acts as an interface to the exchange of gases between air and water and is a vehicle for the transport of inorganic and organic materials between the atmosphere and the water column. The definition, boundaries, and the measurement of the thickness of the water microlayer have been elusive, but the microlayer is generally acknowledged to be limited to the uppermost 30-100 p.m of the water (Hardy et al., 1988, and references therein). These dimensions, however, reflect more the characteristics and capabilities of the sampling devices than rigorous measurements of the microstructure of the surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, A.W. Physical Chemistry of Surfaces. New York: John Wiley & Sons; 1990.

    Google Scholar 

  • Akit, J.; Cooper, D.J.; Manninen, K.I.; Zajic, J.E. Investigation of potential biosurfactant production among phytopathogenic Corynebacteria and related soil microbes. Curt. Microbiol. 6:145–150; 1981.

    CAS  Google Scholar 

  • American Society for Testing and Materials (ASTM). Annual Book of ASTM Standards. vol. 11.01. Philadelphia, PA: ASTM; 1995.

    Google Scholar 

  • Antia, N.J.; Landymore, A.F. Physiological and ecological significance of the chemical instability of uric acid and related purines in sea water and marine algal culture medium. J. Fish. Res. Bd. Can. 31:1327–1335; 1974.

    Article  CAS  Google Scholar 

  • Armstrong, F.A.J.; Williams, P.M.; Strickland J.D.H. Photo-oxidation of organic matter in sea water by ultraviolet radiation, analytical and other applications. Nature 211:481–483; 1966.

    Article  CAS  Google Scholar 

  • Aronstein, B.N.; Paterek, J.R. Effect of nonionic surfactant on the degradation of glass-sorbed PCB congeners by integrated chemical-biological treatment. Environ. Toxicol. Chem. 14:749–754; 1995.

    Article  CAS  Google Scholar 

  • Baier, R.E. Surface quality assessment of natural bodies of water. Proceedings of the 13th Conference on Great Lakes Research: International Association of Great Lakes Research 114–127; 1970.

    Google Scholar 

  • Banat, I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technol. 51:1–12; 1995.

    Article  CAS  Google Scholar 

  • Banat, I.M. The isolation of a thermophilic biosurfactant producing Baciullus sp. Biotech. Lett. 15:591–594; 1993.

    Article  CAS  Google Scholar 

  • Barger, W.R.; Garret, W.D. Surface active organic material in air over the Mediterranean and over the eastern equatorial Pacific. J. Geophys. Res. 81:3151–3157; 1976.

    Article  CAS  Google Scholar 

  • Baylor, E.R.; Sutcliffe, W.H.; Hirschfeld, D.S. Adsorption of phosphates onto bubbles. Deep Sea Res. 9:120–124; 1962.

    CAS  Google Scholar 

  • Bennett-Cornea, W.; Sokol, H.A.; Garrison, W.M. Reductive Deamination in the Radiolysis of Oligopeptides in Aqueous Solution and in the Solid State. AEC rep. UCRL19504. Berkeley: University of Calif. Radiation Laboratory; 1970.

    Google Scholar 

  • Blanchard, D.C. Surface-active organic material on airborne salt particles. Proceedings of the International Conference on Cloud Physics, Toronto 1:25–29; 1968.

    Google Scholar 

  • Blanchard, D.C. Sea-to-air transport of surface active material. Science 146:396–397; 1964.

    Article  PubMed  CAS  Google Scholar 

  • Blanchard, D.C. The electrification of the atmosphere by particles from bubbles in the sea. Progr. Oceanogr. 1:71; 1963.

    Article  Google Scholar 

  • Blanchard, D.C.; Syzdek, L.D. Concentration of bacteria in jet drops from bursting bubbles. J. Geophys. Res. 77:5087–5099; 1972.

    Article  Google Scholar 

  • Brockmann, U.H.; Kattner, G.; Hentzschel, G.; Wandschneider, K.; Junge, H.D.; Huehnerfuss, H. Natuerliche Oberflaechenfilme im Seegebiet vor Sylt. Mar. Biol. 36:135–146; 1976.

    CAS  Google Scholar 

  • Butler, A.C.; Sibbald, R.R. Sampling and GC-FID, GC/MS analysis of petroleum hydrocarbons in the ocean surface microlayer off Richards Bay, South Africa. Estuarine Coastal Shelf Sci. 25:27–42; 1987.

    Article  CAS  Google Scholar 

  • Carlson, D.J.; Cantey, J.L.; Cullen, J.J. Description of and results from a new surface microlayer sampling device. Deep-Sea Res. 35:1205–1213; 1988.

    Article  CAS  Google Scholar 

  • Chiu, H.L.; Huang, S.D. Adsorptive bubble separation of heptachlor and hydroxychlordene. Sep. Sci. Tech. 26:73–84; 1991.

    Article  CAS  Google Scholar 

  • Churchill, S.A.; Griffin, R.A.; Jones, L.P.; Churchill, P.F. Biodegradation rate enhancement of hydrocarbons by an oleophilic fertilizer and a rhamnolipid biosurfactant. J. Environ. Qual. 24:19–28; 1995.

    Article  CAS  Google Scholar 

  • Conte, M.H.; Volkman, J.K.; Eglinton, G. Lipid biomarkers of the Haptophyta. In: Green, J.C.; Leadbeater, S.C., eds. The Haptophyta Algae. Systematics Association Special Publication 51. Oxford: Clarendon Press; 1994:p. 351–377.

    Google Scholar 

  • Cooper, D.G.; Zajic, J.E.; Gerson, D.F.; Manninen, D.I. Isolation and identification of biosurfactants produced during anaerobic growth of Clostridium pasteurianum. J. Ferment. Tech. 58:83–86; 1980.

    CAS  Google Scholar 

  • Cooper, D.G.; Zajic, J.E.; Gerson, D.F. Production of surface active lipids by Corynebacterium lepus. Appl. Environ. Microbiol. 37:4–10; 1979.

    CAS  Google Scholar 

  • Danckwerts, P.V. Significance of liquid-film coefficients in gas absorption. Ind. Eng. Chem. 43:1460–1467; 1951.

    Article  CAS  Google Scholar 

  • Daumas, R.A.; Laborde, P.L.; Marty, J.C.; Saliot, A. Influence of sampling method on the chemical composition of water surface film. Limnol. Oceanogr. 21:319–326; 1976.

    CAS  Google Scholar 

  • Descals, E.; Peláez, F.; López Lorca, L.V. Fungal spora of stream foam from central Spain. I. Conidia identifiable to species. Nova Hedwigia 60:533–550; 1995a.

    Google Scholar 

  • Descals, E.; Peláez, F.; López Lorca, L.V. Fungal spora of stream foam from central Spain. II. Chorology, spore frequency and unknown forms. Nova Hedwigia 60:551–569; 1995b.

    Google Scholar 

  • Dorman, D.C.; Lemlich, R. Separation of liquid mixtures by non-foaming bubble fractionation. Nature 207:145–146; 1965.

    Article  PubMed  CAS  Google Scholar 

  • Duce, R.A.; Quin, J.G.; Olney, C.E.; Piotrowicz, S.R.; Ray, B.J.; Wade, T.L. Enrichment of heavy metals and organic compounds in the surface microlayer of Narragansett Bay, Rhode Island. Science 176:161–163; 1974.

    Article  Google Scholar 

  • Duce, R.A.; Stumm, W.; Prospero, J.M. Working symposium on sea-air chemistry: summary and recommendations. J. Geophys. Res. 77:5059–5061; 1972.

    Article  Google Scholar 

  • Duran, A.P.; Hemond, H.F. Dichlorodifluoromethane (freon 12) as a tracer for nitrous oxide release from a nitrogen-enriched river. In: Brutsaert, W.; Jirka, G.H., eds. Gas Transfer at Water Surfaces. Boston: Reidel; 1984:p. 421–429.

    Google Scholar 

  • Eisenreich, S.J.; Elzerman, A.W.; Armstrong, D.E. Enrichment of micronutrients, heavy metals, and chlorinated hydrocarbons in wind-generated lake foam. Environ. Sci. Technol. 12:413–417; 1978.

    Article  CAS  Google Scholar 

  • Elzerman, A.W.; Armstrong, D.E. Enrichment of Zn, Cd, Pb and Cu in the microlayer of Lakes Michigan, Ontario and Mendota. Limnol. Oceanogr. 24:133–144; 1979.

    CAS  Google Scholar 

  • Finnerty, W.R.; Singer, M.E. A microbial biosurfactant-physiology, biochemistry, and applications. Dev. Ind. Microbiol. 25:31–46; 1984.

    CAS  Google Scholar 

  • Flockhart, B.D.; Graham, H.J. Dilute solutions of sodium oleate. J. Colloid Sei. 8:105–115; 1953.

    Article  CAS  Google Scholar 

  • Fogg, G.E. Excretion of organic matter by phytoplankton. Limnol. Oceanogr. 22:576–577; 1977.

    Article  CAS  Google Scholar 

  • Gaines, G.L. Insoluble Monolayers at Liquid—Gas Interfaces. New York: John Wiley & Sons; 1966.

    Google Scholar 

  • Garrett, W.D. Impact of natural and man-made surface films on the properties of the air-sea interface. In: Dyrssen, D.; Jagner, D., eds. The Changing Chemistry of the Oceans. Nobel Symposium 20. Stockholm: Almqvist and Wiksell; 1972:p. 75–91.

    Google Scholar 

  • Garrett, W.D. The organic chemical composition of the ocean surface. Deep-Sea Res. 14:221–227; 1967.

    CAS  Google Scholar 

  • Garrett, W.D. Collection of slick-forming materials from the sea surface. Limnol. Oceanogr. 10:602–605; 1965.

    Article  Google Scholar 

  • Garrett, W.D.; Bultman, J.D. The Damping of Water Waves by Insoluble Organic Mono-layers. Nay. Res. Lab. Rep. 6003. Washington, DC: Nay. Res. Lab.; 1963.

    Google Scholar 

  • Genereux, D.P. Field studies of stream flow generation using natural and injected traces on Bickford and Walker Branch watersheds. PhD thesis, Massachusetts Institute of Technology, Cambridge; 1991.

    Google Scholar 

  • Georgiu, G.: Lin, S-C.; Sharma, M.M. Surface-active compounds from microorganisms. Bio/Technology 10:60–65; 1992.

    Article  Google Scholar 

  • Gershman, J.W. Physico-chemical properties of solutions of para long chain alkylbenzenesulfonates. J. Phys. Chem. 61:581–584; 1957.

    Article  CAS  Google Scholar 

  • Geyer, J.R.; Mabury, S.A.; Crosby, D.G. Rice field surface microlayers: collection, com-position and pesticide enrichment. Environ. Toxicol. Chem. 15:1676–1682; 1996.

    Google Scholar 

  • Greenberg, A.E.; Clesceri, L.S.; Eaton, A.D., eds. Standard Methods for the Examination of Water and Wastewater. 18th ed. Washington, DC: American Public Health Association; American Water Works Association; Water Environment Federation; 1992.

    Google Scholar 

  • Gunstone, F.D.; Hardwood, J.L.; Padley, F.B. The Lipid Handbook. New York: Chapman & Hall; 1994.

    Google Scholar 

  • Hamilton, E.I.: Clifton, R.J. Techniques for sampling the air—sea interface for estuarine and coastal waters. Limnol. Oceanogr. 24:188–193; 1979.

    Article  CAS  Google Scholar 

  • Han, J.; McCarthy, E.D.; Calvin, M.; Benn, M.D. Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridum and Chlorogloea frischii. J. Chem. Soc. C:2785–2791; 1968.

    Google Scholar 

  • Hardy, J.T. The sea surface film microlayer: biology, chemistry and anthropogenic enrichment. Progr. Oceanogr. 11:307–328; 1982.

    Google Scholar 

  • Hardy, J.T.; Coley, J.A.; Antrim, L.D.; Kiesser, S.L. A hydrophobic large-volume sampler for collecting aquatic surface microlayers: characterization and comparison with the glass plate method. Can. J. Fish. Aquat. Sci. 45:822–826; 1988.

    Article  Google Scholar 

  • Harvey, G.W. Microlayer collection from the sea surface: a new method and initial results. Limnol. Oceanogr. 11:608–613; 1966.

    Google Scholar 

  • Harvey, G.W.; Burzell, L.A. A simple microlayer method for small samples. Limnol. Oceanogr. 17:156–157; 1972.

    Google Scholar 

  • Healy. T.W.; La Mer, V.K. The effect of mechanically produced waves on the properties of monomolecular layers. J. Phys. Chem. 68:3535–3539; 1964.

    Article  CAS  Google Scholar 

  • Higbie, R. The rate of adsorption of a pure gas into a still liquid during short periods of exposure. Trans. Am. Inst. Chem. Eng. 35:365–389; 1935.

    Google Scholar 

  • Horowitz, S.; Gilbert, J.N.; Griffin, W.M. Isolation and characterization of a surfactant produced by Bacillus licheniformis 86. J. Ind. Microbiol. 6:243–248; 1990.

    Article  CAS  Google Scholar 

  • Hunter, K.A.; Liss, P.S. Organic sea surface films. In: Duursma, E.K.; Dawson, R., eds. Marine Organic Chemistry, Evolution, Composition, Interactions and Chemistry of Organic Matter in Seawater. Elsevier Oceanography Series 31. New York: Elsevier Scientific Publishing Company; 1981:p. 259–298.

    Chapter  Google Scholar 

  • Jamieson, G.R.; Reid E.H. The component fatty acids of some marine algal lipids. Phytochemistry 11:1423–1432; 1972.

    Article  CAS  Google Scholar 

  • Jarvis, N.L. Adsorption of surface-active material at the sea-air interface. Limnol. Oceanogr. 12:213–221; 1967.

    Article  Google Scholar 

  • Johnson, B.D.; Zhou, X.; Parrish, C.C.; Wangersky, P.J.; Kerman, B.R. Fractionation of particulate matter, the trace metals Cu, Cd, and Zn, and lipids in foam and water below Niagara Falls. J. Great Lakes Res. 15:189–196; 1989.

    Article  CAS  Google Scholar 

  • Johnson, R.W.; Calder, J.A. Early diagenesis of fatty acids and hydrocarbons in salt marsh environments. Geochim. Cosmochim. Acta 37:1943–1955; 1973.

    CAS  Google Scholar 

  • Karger, B.L.; DeVivo, D.G. General survey of adsorptive bubble separation processes. Sep. Sci. 3:393–424; 1968.

    Article  CAS  Google Scholar 

  • Kattner, G.G.; Brockmann, U.H. Fatty-acid composition of dissolved and particulate matter in surface films. Mar. Chem. 6:233–241; 1978.

    Article  CAS  Google Scholar 

  • Kjelleberg, S.; Stenström, T.A.; Odham, G. Comparative study of different hydrophobic devices for sampling lipid surface films and adherent microorganisms. Mar. Biol. 53:2125; 1979.

    Google Scholar 

  • Kolattukuddy, P.E.; Croteau, R.; Walton, T.J. Biochemistry of plant waxes. In: Kolattukuddy, P.E., ed. Chemistry and Biochemistry of Natural Waxes. Amsterdam: Elsevier; 1976:p. 315–329.

    Google Scholar 

  • Kretschmer, A.; Bock, H.; Wagner, F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 44:864–870; 1982.

    CAS  Google Scholar 

  • Kucklick, J.R.; Bidleman, T.F. Organic contaminants in Winyah Bay, South Carolina. I: pesticides and polycyclic aromatic hydrocarbons in subsurface and microlayer waters. Mar. Environ. Res. 37:63–78; 1994.

    Article  CAS  Google Scholar 

  • Lai, R.J.; Shemdin, O.H. Laboratory study of the generation of spray over water. J. Geophys. Res. 79:3055–3063; 1974.

    Article  Google Scholar 

  • Larsson, K.; Odham, G.; Södergren, A. On lipid surface films on the sea. I. A simple method for sampling and studies of composition. Mar. Chem. 2:49–57; 1974.

    Article  CAS  Google Scholar 

  • Leenheer, J.A.; Huffman, E.W.D., Jr. Classification of organic solutes in water by using macroreticular resins. J. Res. U.S. Geol. Survey 4:737–751; 1976.

    CAS  Google Scholar 

  • Lesik, O.Y.; Karpenko, E.V.; Elysseev, S.A.; Turovsky, A.A. The surface-active and emulsifying properties of Candida lipolytica Y-917 grown on n-hexadecane. Microbiol. J. 51:56–59; 1989.

    CAS  Google Scholar 

  • Lin, S.C.; Carswell, K.S.; Sharma, M.M.; Georgiou, G. Continuous production of the lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl. Microbiol. Biotech. 41:281–285; 1994.

    CAS  Google Scholar 

  • Liss, P.S. Chemistry of the sea surface microlayer. In: Riley, J.; Skirrow, G.; Chester, R., eds. Chemical Oceanography. London: Academic Press; 1975:p. 193–243.

    Google Scholar 

  • Liss, P.S. Processes of gas exchange across an air-water interface. Deep Sea Res. 20:221–238; 1973.

    CAS  Google Scholar 

  • MacIntyre, F. Chemical fractionation and sea-surface microlayer processes. In: Goldberg, E.D., ed. The Sea, vol. 5. New York: Wiley-Interscience; 1974:p. 245–299.

    Google Scholar 

  • MacIntyre, E Bubbles: a boundary-layer “microtome” for micron-thick samples of liquid surfaces. J. Phys. Chem. 72:589–592; 1968.

    Article  CAS  Google Scholar 

  • Mackay, D.; Yeun, A.T.K. Mass transfer coefficients correlations for volatilization of organic solutes from water. Environ. Sci. Technol. 17:211–233; 1983.

    Article  CAS  Google Scholar 

  • Mallinger, W.D.; Mickelson, T.P. Experiments with monomolecular films on the surface of the open sea. J. Phys. Oceanogr. 3:328–336; 1973.

    Article  Google Scholar 

  • Marty, J.C.; Choiniere, A. Acides gras et hydrocarbures de lé¦cume marine et de la micro-couche de surface. Naturaliste Can. 106:141–147; 1979.

    CAS  Google Scholar 

  • Matsuyama, T.; Kaneda, K.; Ishizuka, I.; Toida, T.; Yano, I. Surface-active novel glycolipid and linked 3-hydroxy fatty acids produced by Serratia rubidaea. J. Bacteriol. 172:3015–3022; 1990.

    PubMed  CAS  Google Scholar 

  • McCafferty, E.; Pravdic, V.; Zettlemoyer, A.C. Dielectric behavior of adsorbed water films on the alfa-iron III oxide surface. Trans. Faraday Soc. 66:1720–1731; 1970.

    Article  CAS  Google Scholar 

  • McDonald, C.R.; Cooper, D.G.; Zajic, J.E. Surface-active lipids from Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41:117–123; 1981.

    Google Scholar 

  • McInerney, M.J.; Javaheri, M.; Nagle, D.P. Properties of the biosurfactant produced by Bacillus licheniformis strain JF-2. Ind. Microbiol. 5:95–102; 1990.

    CAS  Google Scholar 

  • Means, J.C.; Wijayaratne, R. Role of natural colloids in the transport of hydrophobic pollutants. Science 215:968–970; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Meneses, I. Foam as a dispersal agent in the rocky intertidal of central Chile. Eur. J. Phycol. 28:107–110; 1993.

    Article  Google Scholar 

  • Metsik, J.S.; Perevertaev, V.D.; Liopo, V.A.; Timoshchenko, G.T.; Kiselev, A.B. New data on the structure and properties of thin films on mica crystals. J. Colloid Interface Sci. 43:662–669; 1973.

    Article  CAS  Google Scholar 

  • Meyers, P.A.; Kawka, D.E. Fractionation of hydrophobic organic materials in the surface microlayers. J. Great Lakes Res. 8:288–298; 1982.

    Article  CAS  Google Scholar 

  • Meyers, P.A.; Owen, R.M. Sources of fatty acids in Lake Michigan surface microlayers and subsurface waters. Geophys. Res. Lett. 7:885–888; 1980.

    Article  CAS  Google Scholar 

  • Miyake, Y.; Tsounogai, S. Evaporation of iodine from the ocean. J. Geophys. Res. 68:3989–3993; 1963.

    CAS  Google Scholar 

  • Morikawa, M.; Daido, H.; Takao, T.; Murata, S.; Shimonishi, T.; Imanaka, T. A new lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J. Bacteriol. 175:6459–6466; 1993.

    PubMed  CAS  Google Scholar 

  • Münnich, K.O.; Clarke, W.B.; Fischer, K.H.; Flothmann, D.; Kromer, B.; Roether, W.; Siegenthaler, U.; Top, Z.; Weiss, W. Gas exchange and evaporation studies in a circular wind tunnel, continuous radon-222 measurements at sea, and tritium/helium-3 measurements in a lake. In: Favre, H.; Hasselmann, K., eds. Turbulent Fluxes through the Sea Surface, Wave Dynamics and Predictions. New York: Plenum; 1978:p. 151–165.

    Chapter  Google Scholar 

  • Napolitano, G.E.; Richmond, J.E. Enrichment of biogenic lipids, hydrocarbons and PCBs in stream-surface foams. J. Environ. Toxicol. Chem. 14:197–201; 1995.

    Article  CAS  Google Scholar 

  • Napolitano, G.E.; Ackman, R.G.; Parrish, C.C. Lipids and lipophilic pollutants in three species of migratory shorebirds and their food in Shepody Bay (Bay of Fundy, New Brunswick). Lipids 27:785–790; 1992.

    Article  CAS  Google Scholar 

  • Nevenzel, J. Biogenic hydrocarbons in marine organisms. In: Ackman, R.G., ed. Marine Biogenic Lipids, Fats and Oils. Boca Raton, FL: CRC Press; 1989:p. 3–71.

    Google Scholar 

  • Norkrans, B. Surface microlayers in aquatic environments. In: Alexander M., ed. Advances in Microbial Ecology, vol. 4. New York: Plenum Press; 1980:p. 495–514.

    Chapter  Google Scholar 

  • O’Connor, D.J.; Dobbins, W.E. Mechanisms of reaereation in natural streams. Trans. Am. Soc. Civ. Eng. 123:641–684; 1958.

    Google Scholar 

  • Parrish, C.C. Time series of particulate and dissolved lipid classes during spring phytoplankton blooms in Bedford Basin, a marine inlet. Mar. Ecol. Prog. Ser. 35:129–139; 1987.

    Article  CAS  Google Scholar 

  • Paterson, M.P.; Spillane, K.T. Surface films and the production of sea salt aerosol. Q. J. R. Meteorol. Soc. 95:526–534; 1969.

    Article  Google Scholar 

  • Persson, A.; Osterberg, E.; Dostalek, M. Biosurfactant production by Pseudomonas fluorescens 378: growth and product characteristics. Appl. Microbiol. Biotechnol. 29:1–4; 1988.

    CAS  Google Scholar 

  • Pojasek, R.B.; Zajicek, O.T. Surface microlayers and foams-source and metal transport in aquatic systems. Water Res. 12:7–10; 1978.

    Article  CAS  Google Scholar 

  • Powalla, M.; Lang, S.; Wray, V. Penta-and disaccharide lipid formation by Nocardia corynebacteroides grown on n-alkanes. Appl. Microbiol. Biotechnol. 31:473–479; 1989.

    CAS  Google Scholar 

  • Ramsay, B.; McCarthy, J.; Guerra-Santos, L.; Käppeli, O.; Feichter, A.; Margaritis, A. Biosurfactant production and diauxic growth of Rhodococcus aurantiacus when using n-alkanes as the carbon source. Can. J. Microbiol. 34:1209–1212; 1988.

    CAS  Google Scholar 

  • Rathbun, R.E.; Tai, D.J.J. Gas-film coefficients for streams. J. Environ. Eng. Div. ASCE 109:1111–1127; 1983.

    Article  CAS  Google Scholar 

  • Rathbun, R.E.; Tai, D.J.J. Volatilization of organic compounds from streams. Environ. Eng. Div. ASCE 108:973–989; 1982.

    CAS  Google Scholar 

  • Roch, F.; Alexander, M. Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem. 14:1151–1158; 1995.

    CAS  Google Scholar 

  • Schramm, L.L.; Wassmuth, F. Foams: basic principles. In: Schramm, L.L., ed. Foams: Fundamentals and Applications in the Petroleum Industry. Washington, DC: American Chemical Society; 1994:p. 3–45.

    Chapter  Google Scholar 

  • Schwarzenbach, R.P. Assessing the behaviour and fate of hydrophobic organic compounds in the aquatic environment—general concepts and case studies emphasizing volatile halogenated hydrocarbons. Habilitation thesis, Swiss Federal Institute of Technology, Zurich; 1983.

    Google Scholar 

  • Schwarzenbach, R.P.; Gschwend, P.M.; Imboden, D.M. Environmental Organic Chemistry. New York: John Wiley & Sons, Inc.; 1993.

    Google Scholar 

  • Sharp, J.H. Excretion of organic matter by marine phytoplankton: do healthy cells do it? Limnol. Oceanogr. 22:381–399; 1977.

    CAS  Google Scholar 

  • Sieburth, J. Bacteriological samplers for air¨Cwater and water¨Csediment interfaces. Trans. Joint Conf. MTS and ASLO, Washington, DC; 1965:p. 1064–1068.

    Google Scholar 

  • Simoneit, B.R.T.; Halpern, H.I.; Didyk, B.M. Lipid productivity of a high Andean lake. In: Trudinger, P.A.; Walter, M.R.; Ralph, B.J., eds. Biogeochemistry of Ancient and Modern Environments. Berlin: Springer-Verlag; 1980:p. 201–210.

    Chapter  Google Scholar 

  • Södergren, A. Origin and composition of surface slicks in lakes of different trophic status. Limnol. Oceanogr. 32:1307–1316; 1987.

    Article  Google Scholar 

  • Södergren, A. Origin of 14C and 32P labelled lipids moving to and from freshwater surface microlayers. Oikos 33:278–289; 1979.

    Article  Google Scholar 

  • Stobbe, H.; Peschel, G. Experimental determination of static permittivity of extreme thin liquid layers of water dependent on their thickness. Colloid Polym. Sci. 275:162–169; 1997.

    Article  CAS  Google Scholar 

  • Stumm, W.; Morgan, J.J. Aquatic Chemistry. New York: John Wiley & Sons; 1981.

    Google Scholar 

  • Szekielda, K.H., Kupferman, S.L.; Klemas, V.; Polis, D.F. Element enrichment in organic films and foams associated with aquatic frontal systems. J. Geophys. Res. 77:5278–5282; 1971.

    Article  Google Scholar 

  • Thangamani, S.; Shreve, G.S. Effect of anionic biosurfactant on hexadecane partitioning in multiphase systems. Env. Sci. Tech. 28:1993–2000; 1994.

    Article  CAS  Google Scholar 

  • Tunlid, A.; White, D.C. Biochemical analysis of biomass, community structure, nutritional status, and metabolic activity of microbial communities in soil. In: Stotzky, G.; Bollag J-M., eds. Soil Biochemistry. New York: Marcel Dekker; 1992:p. 229–262.

    Google Scholar 

  • Velimirov, B. Sugar and lipid components in sea foam near kelp beds. Mar. Ecol. 3:97–107;1982.

    Article  CAS  Google Scholar 

  • Volz, F.E. Infrared absorption by atmospheric aerosol substances. J. Geophys. Res. 77: 1017–1031; 1972.

    Article  CAS  Google Scholar 

  • Wachs, W.; Hayano, S. Über die kritische Micellkonzentration (CMC) von fettsäuremonoestern der Saccharose und ihre Beziehung zum HLB-WERT. Kolloid-Z 181:139–144; 1962.

    Article  CAS  Google Scholar 

  • Warry, N.D.; Chan, C.H. Organic contaminants in the suspended sediments of the Niagara River. J. Great Lakes Res. 7:394–403; 1981.

    Article  CAS  Google Scholar 

  • Wasan, D.T.; Koczo, K.; Nikolov, A.D. Mechanisms of aqueous foam stability and anti-foaming action with and without oil. In: Schramm, L.L., ed. Foams: Fundamentals and Applications in the Petroleum Industry. Washington, DC: American Chemical Society; 1994:p. 48–114.

    Google Scholar 

  • Webster, J.; Marvanová, L.; Eicker, A. Spores from foam from South African rivers. Nova Hedwigia 59:379–398; 1994.

    Google Scholar 

  • White, D.C. Chemical ecology: possible linkage between macro-and microbial ecology. Oikos 74:177–184; 1995.

    Article  Google Scholar 

  • Whitman, W.G. The two film theory of gas absorption. Chem. Metal. Eng. 29:146–148; 1923.

    CAS  Google Scholar 

  • Wilcock, R.J. Reaction studies on some New Zealand rivers using methyl chloride as a gas tracer. [n: Brutsaert, W.; Jirka, G.H., eds. Gas Transfer at Water Surfaces. Boston: Reidel; 1984:p. 413–420.

    Google Scholar 

  • Williams, P.M.; Carlucci, A.F.; Henrichs, S.M.; Van Vleet, E.S.; Horrigan, S.G.; Reid, F.M.H.; Robertson, K.J. Chemical and microbial studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California. Mar. Chem. 19:1798; 1986.

    Google Scholar 

  • Williams, R.J.; Phillips, J.N.; Mysels, K. Critical micelle concentration of sodium dodecylsufate at 25¡ãC. J. Trans. Faraday Soc. 51:728–737; 1955.

    Article  CAS  Google Scholar 

  • Wilson, A.T. Surface of the ocean as a source of air-borne nitrogenous material and other plant nutrients. Nature 184:99–101; 1959.

    Article  CAS  Google Scholar 

  • Wissmar, R.C.; Simenstad, A. Surface foam chemistry and productivity in the Duckabush River estuary, Puget Sound, Washington. In: Kennedy, V.S., ed. The Estuary as a Filter. San Diego, CA: Academic Press; 1984:p. 331–348.

    Google Scholar 

  • Wu, J. Evaporation due to spray. J. Geophys. Res. 79:4107–4109; 1974.

    Article  Google Scholar 

  • Zafiriou, O.C. Photochemistry of halogens in the marine atmosphere. J. Geophys. Res. 79:2730–2732; 1974.

    Article  CAS  Google Scholar 

  • Zepp, R.G.; Wolfe, N.L.; Gordon, J.A.; Baughman, G.L. Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis, and vaporization. Environ. Sci. Technol. 9:1144–1150; 1975.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Napolitano, G.E., Cicerone, D.S. (1999). Lipids in Water-Surface Microlayers and Foams. In: Arts, M.T., Wainman, B.C. (eds) Lipids in Freshwater Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-0547-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0547-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-6813-0

  • Online ISBN: 978-1-4612-0547-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics