Skip to main content

Physiology of the Nose and Paranasal Sinuses

  • Chapter
Diseases of the Sinuses

Abstract

Comparative studies demonstrate the existence of nasal structures and of paranasal sinuses that are common to a wide range of animal species. By contrast with many animals, human olfactory and turbinate structures and functions are vestigial (Figs. 1–3) (1), but human paranasal sinuses are relatively well developed. Obviously useful and important functions of olfaction and respiratory air processing can be attributed to the nose, but despite many thoughtful speculations, conclusive evidence of functional importance of the paranasal sinuses has yet to be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Negus VE. The comparative anatomy and physiology of the nose and paranasal sinuses. London: Livingstone, 1958.

    Google Scholar 

  2. Gwaltney JM Jr, Phillips D, Miller RD, Riker DK. Computed tomographic study of the common cold. N Engl J Med 1994;330:25–30.

    Article  PubMed  Google Scholar 

  3. Kimmelman CP. The problem of nasal obstruction. Otolaryngol Clin North Am 1989;22(2):253–264.

    PubMed  CAS  Google Scholar 

  4. Cole P. The Respiratory Role of the Upper Airways. St. Louis, MO: Mosby-Year Book, 1993; pp. 1–59.

    Google Scholar 

  5. Proetz AW. Air currents in the upper respiratory tract and their clinical importance. Ann Otol Rhinol Laryngol 1951;60:439–467.

    PubMed  CAS  Google Scholar 

  6. McCaffrey TV. The nose and sinus mucosa and mucous. Curr Opinion Otolaryngol Head Neck Surg 1994;2: 10–15.

    Article  Google Scholar 

  7. Jorissen M, Cassiman J-J. Relevance of the ciliary ultrastructure in primary and secondary dyskinesia: a review. Am J Rhinol 1991;5(3):91–101.

    Article  Google Scholar 

  8. Deitmer T, Scheffler R. The effects of different preparations of nasal decongestants on ciliary beat frequency in vitro. Rhinology 1993;31:151–153.

    PubMed  CAS  Google Scholar 

  9. Stammberger H. Endoscopic endonasal surgery—concepts in treatment of recurring rhinosinusitis. Part 1. Anatomic and pathophysiolgic considerations. Otolaryngol Head Neck Surg 1986;94(2) 143–147.

    CAS  Google Scholar 

  10. Messerklinger W. Diagnosis and endoscopic surgery of the nose and its adjoining structures. Acta Otolaryngol (Belg) 1980;34(2): 170–176.

    CAS  Google Scholar 

  11. Cole P. The mouth and throat. In: The Respiratory Role of the Upper Airways. St. Louis, MO: Mosby-Year Book, 1993.

    Google Scholar 

  12. Cole P, Forsyth R, Haight JSJ. Respiratory resistance of the oral airway. Am Rev Respir Dis 1982;125:363–365.

    PubMed  CAS  Google Scholar 

  13. Cole P. Assessment of the upper airways. In: The Respiratory Role of the Upper Airways. St. Louis, MO: Mosby-Year Book, 1993.

    Google Scholar 

  14. Cole P. Rhinology 1995;33:10–13.

    PubMed  Google Scholar 

  15. Kasperbauer JL, Kern EB. Nasal valve physiology implications in nasal surgery. Otolaryngol Clin North Am 1987;20(4):699–719.

    PubMed  CAS  Google Scholar 

  16. Cole P, Haight JSJ, Cooper PW, Kassel EE. A computed tomographic study of nasal mucosa: effects of vasoactive substances. J Otolaryngol 1983;12(1):58.

    PubMed  CAS  Google Scholar 

  17. Wustrow F. Schwellkorper am Septum nasi. Z Anat Entwicklung 1951; 116:139.

    Article  Google Scholar 

  18. Cole P, Haight JSJ, Naito K, Kucharczyk W. Magnetic resonance imaging of the nasal airways. Am J Rhinol 1989;3(2):63.

    Article  Google Scholar 

  19. Chaban R, Cole P, Naito K. Simulated septal deviations. Arch Otolaryngol Head Neck Surg 1988;114:413.

    Article  PubMed  CAS  Google Scholar 

  20. Cole P, Chaban R, Naito K, Oprysk D. The obstructive nasal septum: effect of simulated deviations on nasal airflow resistance. Arch Otolaryngol Head Neck Surg 1988:114:410.

    Article  PubMed  CAS  Google Scholar 

  21. Mertz JS, McCaffrey TV, Kern EB. Objective evaluation of anterior septal surgical reconstruction. Otolaryngol Head Neck Surg 1984;92(3):308–311.

    PubMed  CAS  Google Scholar 

  22. Briant TDR. Management of severe septal deformities. J Otolaryngol 1985; 14(2): 120–124.

    PubMed  CAS  Google Scholar 

  23. Sulsenti G, Palma P. The nasal valve area: structure, function, clinics and treatment. Acta Otolaryngol Ital 1989;(Suppl 22):3–25.

    Google Scholar 

  24. Adamson P, Smith O, Cole P. The effect of cosmetic rhinoplasty on nasal patency. Laryngoscope 1990; 100: 357–359.

    Article  PubMed  CAS  Google Scholar 

  25. Batson OV. The venous networks of the nasal mucosa. Ann Otol Rhinol Laryngol 1954;63(3):571–580.

    PubMed  CAS  Google Scholar 

  26. Cauna N. Blood and nerve supply of the nasal lining. In: Proctor DF, Andersen IB, eds., The Nose: Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier Biomédical, 1982; pp. 45–69.

    Google Scholar 

  27. Bende M. The physiologic importance of the nasal mucosal vascular bed: a review. Am J Rhinol 1990;5: 189–191.

    Article  Google Scholar 

  28. Rundcrantz H. Postural variations of nasal patency. Acta Otolaryngol (Stockh) 1969;68:435–443.

    Article  CAS  Google Scholar 

  29. Hasegawa M, Saito Y. Postural variations in nasal resistance and symptomatology in allergic rhinitis. Acta Otolaryngol 1979;88:268–272.

    Article  PubMed  CAS  Google Scholar 

  30. Erjefalt I, Persson CGA. Inflammatory passage of plasma macromolecules into airway wall and lumen. Pulmon Pharmacol 1989;2(2):93–102.

    Article  CAS  Google Scholar 

  31. Cole P, Haight JSJ. Posture and the nasal cycle. Ann Otol Rhinol Laryngol 1986;95:233.

    PubMed  CAS  Google Scholar 

  32. Stocksted P. Rhinometric measurements for determination of the nasal cycle. Acta Otolaryngol (Stockh) 1953;(Suppl 109): 159–175.

    Article  Google Scholar 

  33. Arbour P, Kern EB. Paradoxical nasal obstruction. Can J Otolaryngol 1975;4(2):333–338.

    PubMed  CAS  Google Scholar 

  34. Ogura JH, Stocksted P. Rhinomanometry in some rhinologic diseases. Laryngoscope 1958;68:2001–2014.

    Article  PubMed  CAS  Google Scholar 

  35. Singh B, Chhina GA. Some reflections on ancient Indian physiology. In: Keswani NH, Manchandra SK, eds., The Science of Medicine and Physiological Concepts in Ancient and Mediaeval India. 26th International Congress of Physiological Sciences, New Delhi, 1974.

    Google Scholar 

  36. Shannahoff-Khalsa D. Lateralized rhythms of the central and autonomie nervous systems. Intern J Psychophysiol 1991;11(3):225–251.

    Article  CAS  Google Scholar 

  37. Kayser R. Die exacta Messung der Luftdurchgangigkeit der Nase. Arch Laryngol Rhinol 1895;3:101–120.

    Google Scholar 

  38. Principato JJ, Ozenberger JM. Cyclical changes in nasal resistance. Arch Otolaryngol 1970;91:71–77.

    Article  PubMed  CAS  Google Scholar 

  39. Haight JSJ, Cole P. Unilateral nasal resistance and asymmetrical body pressures. J Otolaryngol 1986;Suppl 16:1–31.

    CAS  Google Scholar 

  40. Rothe CF. Reflex control of veins and vascular capacitance. Physiol Rev 1983;63(4): 1281–1342.

    PubMed  CAS  Google Scholar 

  41. Hudgel DW, Robertson DW. Nasal resistance during wakefulness and sleep in normal man. Acta Otolaryngol (Stockh) 1984;98:130–135.

    Article  CAS  Google Scholar 

  42. Brown EA. Measurement of resistance of the nasal passages 1-3. Rev Allerg 1967;21:472–857.

    CAS  Google Scholar 

  43. Swift DL, Proctor DF. Access of air to the respiratory tract. In: Brain D, Proctor DF, Reid LM, eds., Respiratory Defense Mechanisms. New York: Marcel Dekker, 1977; pp. 63–93.

    Google Scholar 

  44. Swift DL. Physical principles of airflow and transport phenomena influencing air modification. In: Proctor DF, Andersen I, eds., The Nose: Upper Airway Physiology and the Atmospheric Environment. Amsterdam: Elsevier Biomédical, 1982;337–348.

    Google Scholar 

  45. Cole P. Cleansing and conditioning. In: The Respiratory Role of the Upper Airways. St. Louis, MO: Mosby-Year Book, 1993.

    Google Scholar 

  46. Leopold DA. Pollution: The nose and sinuses. Otolaryngol Head Neck Surg 1992; 106:713–719.

    PubMed  CAS  Google Scholar 

  47. Cole P. Modification of inspired air. In: Mathew OP, Sant’Ambrogio G, eds., Respiratory Function of the Upper Airway. New York: Marcel Dekker, 1988.

    Google Scholar 

  48. Scott JH. Heat regulating function of the nasal mucous membrane. J Laryngol 1953;87:461,462.

    Google Scholar 

  49. Aust R, Falck B, Svanholm H. The intrinsic functions of the paranasal sinuses in health and inflammation. Rhinology 1984;22:105–107.

    PubMed  CAS  Google Scholar 

  50. Drettner B. The maxillary ostium in sinusitis. Eye, Ear, Nose, Throat Monthly 1966;45:66–70.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cole, P. (1996). Physiology of the Nose and Paranasal Sinuses. In: Gershwin, M.E., Incaudo, G.A. (eds) Diseases of the Sinuses. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-0225-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0225-7_2

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-6670-9

  • Online ISBN: 978-1-4612-0225-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics