Skip to main content

Risk-Sensitive Dynamic Asset Management with Partial Information

  • Chapter
Stochastics in Finite and Infinite Dimensions

Part of the book series: Trends in Mathematics ((TM))

Abstract

Since the early work of Jacobson [16], risk-sensitive control problems have been studied extensively from various aspects. Among them, LEQG (Linear Exponential Quadratic Gaussian) control problems have been studied as the analogue of LQG control, where the optimal controls are explicitly represented by using the solutions of matrix Riccati differential equations. In fact, in the case of the discrete time LEQG control problem, the representation of the optimal strategy was obtained by Whittle [24] and in the continuous time case by Bensoussan and Van Schuppen [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Bensoussan, Stochastic Control of Partially Observable Systems, Cambridge, 1992.

    Book  Google Scholar 

  2. A. Bensoussan, J. Frehse and H. Nagai, Some results on risk-sensitive control with full observation, Applied Mathematics and Optimization, 37 (1998), 1–41.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bensoussan and H. Nagai, Min-max characterization of a small noise limit on risk sensitive control, SIAM J. Control and Optim., 35 (1997), 1093–1115.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bensoussan and H. Nagai, Conditions for no breakdown and Bell-man equations of risk-sensitive control, to appear in Applied Mathematics and Optimization.

    Google Scholar 

  5. A. Bensoussan and J.H. Van Schuppen, Optimal control of partially observable stochastic systems with an exponential-of integral performance index, SIAM J. Cont. Optim., 23 (1985), 599–613.

    Article  MATH  Google Scholar 

  6. T.R. Bielecki and S.R. Pliska, Risk-Sensitive Dynamic Asset Management, Appl. Math. Optim., 39 (1999), 337–360.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.S. Bucy and P.D. Joseph Filtering for Stochastic Processes with Applications to Guidance, Chelsea, New York, 1987.

    Google Scholar 

  8. W.H. Fleming, Optimal investment models and risk-sensitive stochastic control, IMA Vols. in Math. and Appl., 65 (1995), 75–88, Springer-Verlag, New York.

    Google Scholar 

  9. W.H. Fleming and M.R. James, The risk-sensitive index and H2 and Hoc, norms for nonlinear systems, Math. Control Signals and Systems, 8 (1995), 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  10. W.H. Fleming and W.M. McEneaney, Risk sensitive optimal control and differential games, Lecture Note in Control and Inform. Sci., 184 (1992), 185–197.

    MathSciNet  Google Scholar 

  11. W.H. Fleming and W.M. McEneaney, Risk-sensitive control on an infinite horizon, SIAM J. Control and Optimization, 33, No. 6 (1995), 1881–1915.

    Article  MathSciNet  MATH  Google Scholar 

  12. W.H. Fleming and R. Rishel, Optimal Deterministic and Stochastic Control, Springer-Verlag, Berlin, 1975.

    Book  MATH  Google Scholar 

  13. W.H. Fleming and S.J. Sheu, Optimal Long Term Growth Rate of Expected Utility of Wealth, Ann. Appl. Probab., 9 (1999), 871–903.

    Article  MathSciNet  MATH  Google Scholar 

  14. W.H. Fleming and S. J. Sheu, Asymptotics for the principal eigen-value and eigenfunction of a nearly first order operator with large potential, Annals of Probability, 25 (1997), 1953–1994.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Ishii, H. Nagai and F. Teramoto, A singular limit on risk sensitive control and semi-classical analysis, In Proceeding of the 7th Japan-Russia Symp. on Prob. and Math. Stat., World Scientific (1996) 164–173.

    Google Scholar 

  16. D.H. Jacobson, Optimal stochastic linear systems with exponential performance criteria and relation to deterministic differential games, IEEE Trans. Automatic Control, AC-18 (1973), 124–131.

    Article  MathSciNet  MATH  Google Scholar 

  17. M.R. James, Asymptotic analysis of nonlinear stochastic risk-sensitive control and differential games, Mathematics of Control, Signals and Systems, 5 (1992), 401–417.

    Article  MATH  Google Scholar 

  18. M.R. James, A partial differential inequality for dissipative nonlinear systems, Systems and Control Letters, 21 (1993), 315–320.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Kaise and H. Nagai, Bellman-Isaacs equations of ergodic type related to risk-sensitive control and their singular limits, Asymptotic Analysis, 16 (1998), 347–362.

    MathSciNet  MATH  Google Scholar 

  20. H. Kaise and H. Nagai, Ergodic type Bellman equations of risk-sensitive control with large parameters and their singular limits, Asymptotic Analysis, 20 (1999), 279–299.

    MathSciNet  MATH  Google Scholar 

  21. M. Lefevre and P. Montulet, Risk-sensitive optimal investment policy, Int. J. Systems Sci., 22 (1994), 183–192.

    Article  Google Scholar 

  22. H. Nagai, Bellman equations of risk-sensitive control, SIAM J. Control and Optimization, 34, No. 1 (1996), 74–101.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Rishel, “Optimal Portfolio Management with Partial Observations and Power Utility Function”, in: Stochastic Analysis, Control, Optimization and Applications, Birkhäuser, Basel, pp. 605–620, 1999.

    Chapter  Google Scholar 

  24. T. Runolfsson, Stationary risk-sensitive LQG control and its relation to LQG and H-infinity control, Proc. 29-th CDC conference, (1990), 1018–1023.

    Google Scholar 

  25. P. Whittle, Risk-sensitive linear quadratic Gaussian control, Adv. Appl. Prob., 13 (1982), 764–777.

    MathSciNet  Google Scholar 

  26. P. Whittle, A risk sensitive maximum principle, Syst. Control Lett., 16 (1990), 183–192.

    Article  MathSciNet  Google Scholar 

  27. P. Whittle, A risk sensitive maximum principle: The case of imperfect state information, IEEE Trans. Auto. Control, 36 (1991), 793–801.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nagai, H. (2001). Risk-Sensitive Dynamic Asset Management with Partial Information. In: Hida, T., Karandikar, R.L., Kunita, H., Rajput, B.S., Watanabe, S., Xiong, J. (eds) Stochastics in Finite and Infinite Dimensions. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0167-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0167-0_17

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6643-3

  • Online ISBN: 978-1-4612-0167-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics