Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 834 Accesses

Abstract

In many aerospace applications, large amplitude maneuvers are performed that require a high degree of accuracy. Aerospace applications also typically require a system to track a time-varying reference trajectory rather than a simple setpoint regulation. These objectives motivate the need to incorporate the nonlinear dynamic effects of the system in the control system synthesis. However, the problem is further complicated because the mass and inertia are not exactly known due to fuel consumption, payload variation, appendage deployment, etc. Many existing control strategies for aerospace systems use singular (i.e., the Jacobian matrix in the kinematic equation is singular for some orientations) three-parameter attitude representations such as Euler angles, which are only locally valid. As described in Chapter 2, the unit quaternion is a four-parameter representation that can be used to globally represent the attitude of an object without singularities. However, an additional constraint equation is introduced. Along this line of reasoning, a full-state feedback quaternion-based attitude tracking controller is first developed for the nonlinear dynamics of a rigid spacecraft with parametric uncertainty in the inertia matrix. Motivated by the desire to eliminate additional sensor payload, a second controller is developed under the additional constraint that angular velocity measurements are not available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ahmed, V. T. Coppola, and D. S. Bernstein, “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification,”Journal of Guidance Control and DynamicsVol. 21, No. 5, Sept.-Oct. 1998, pp. 684–691.

    Article  Google Scholar 

  2. J. Ahmed and D. S. Bernstein, “Globally Convergent Adaptive Control of Spacecraft Angular Velocity Without Inertia Modeling,”Proceedings of the American Control ConferenceSan Diego, CA, June 1999, pp. 1540–1544.

    Google Scholar 

  3. W. W. Anderson and C. R. Keckler, “An Integrated Power/Attitude Control System (IPACS) for Space Application,”Proceedings of the 5th IFAC Symposium on Automatic Control in Space1973.

    Google Scholar 

  4. F. Bauer et al., “Satellite Formation Flying using an Innovative Autonomous Control System (AUTOCON) Environment,”Proceedings of the AIAA Guidance Navigation and Control ConferenceNew Orleans, LA, 1997, pp. 657–666.

    Google Scholar 

  5. J. D. Boskovic, S. M. Li, and R. K. Mehra, “Globally Stable Adaptive Tracking Control Design for Spacecraft under Input Saturation,”Proceedings of the IEEE Conference on Decision and ControlPhoenix, AZ, Dec. 1999, pp. 1952–1957.

    Google Scholar 

  6. T. Burg, D. Dawson, J. Hu, and M. de Queiroz, “An Adaptive Partial State Feedback Controller for RLED Robot Manipulators,”IEEE Transactions on Automatic ControlVol. 41, No. 7, July 1996, pp. 1024–1031.

    Article  MATH  Google Scholar 

  7. V. A. Chobotov (ed.)Orbital MechanicsWashington, DC: AIAA, 1996, pp. 31–33.

    MATH  Google Scholar 

  8. W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance System for Satellite Rendezvous,”Journal of Aerospace ScienceVol. 27, No. 9, 1960, pp. 653–658.

    MATH  Google Scholar 

  9. B. T. Costic, M. S. de Queiroz, D. M. Dawson, and Y. Fang, “Energy Management and Attitude Control Strategies using Flywheels,”Proceedings of the IEEE Conference on Decision and ControlOrlando, FL, Dec. 2001, pp. 3435–3440.

    Google Scholar 

  10. B. T. Costic, D. M. Dawson, M. S. de Queiroz, and V. Kapila, “A Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements,”AIAA Journal of Guidance Control and DynamicsVol. 24, No. 6, Nov. 2001, pp. 1214–1222.

    Article  Google Scholar 

  11. M. Dalsmo and O. Egeland, “State Feedback 7-tc-Suboptimal Control of a Rigid Spacecraft,”IEEE Transactions on Automatic ControlVol. 42, No. 8, Aug. 1997, pp. 1186–1189.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. M. Dawson, J. Hu, and T. C. BurgNonlinear Control of Electric MachineryNew York, NY: Marcel Dekker, 1998, pp. 1–19.

    Google Scholar 

  13. M. S. de Queiroz, V. Kapila, and Q. Yan, “Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying,”AIAA Journal of Guidance Control and DynamicsVol. 23, No. 3, May-June 2000, pp. 385–390.

    Article  Google Scholar 

  14. J. L. Fausz and D. J. Richie, “Flywheel Simultaneous Attitude Control and Energy Storage Using a VSCMG Configuration,” Proceedings of the IEEE Conference on Control Applications Anchorage, AK, Sept. 2000, pp. 991–995.

    Google Scholar 

  15. J. R. Guinn, “Autonomous Navigation for the New Millenium Program Earth Orbiter 1 Mission,”Proceedings of the AIAA Guidance Navigation and Control ConferenceNew Orleans, LA, 1997, pp. 612–617.

    Google Scholar 

  16. F. Y. Hadaegh, W. M. Lu, and P. C. Wang, “Adaptive Control of Formation Flying Spacecraft for Interferometry,”Proceedings of the IFAC Conference on Large Scale SystemsRio Patras, Greece, 1998, pp. 97–102.

    Google Scholar 

  17. C. D. Hall, “High-Speed Flywheels for Integrated Energy Storage and Attitude Control,”Proceedings of the American Control ConferenceAlbuquerque, NM, June 1997, pp. 1894–1898.

    Google Scholar 

  18. P. C. HughesSpacecraft Attitude DynamicsNew York, NY: Wiley, 1994.

    Google Scholar 

  19. T. R. Kane, P. W. Likins, and D. A. LevinsonSpacecraft DynamicsNew York, NY: McGraw-Hill, 1983.

    Google Scholar 

  20. V. Kapila, A.G. Sparks, J. Buffington, and Q. Yan, “Spacecraft Formation Flying: Dynamics and Control,”Proceedings of the American Control ConferenceSan Diego, CA, 1999, pp. 4137–4141.

    Google Scholar 

  21. M. KrstiĂĽ, I. Kanellakopoulos, and P. KokotovicNonlinear and Adaptive Control DesignNew York, NY: Wiley, 1995.

    Google Scholar 

  22. M. Krstiü and P. Tsiotras“Inverse Optimal Stabilization of a Rigid Spacecraft,”IEEE Tranactions on Automatic ControlVol 44, No. 5, May 1999, pp. 1042–1049.

    Article  Google Scholar 

  23. J. B. KuipersQuaternions and Rotation SequencesPrinceton, NJ: Princeton University Press, 1999.

    Google Scholar 

  24. K. Lau, “The New Millenium Formation Flying Optical Interferometer,”Proceedings of the AIAA Guidance Navigation and Control ConferenceNew Orleans, LA, 1997, pp. 650–656.

    Google Scholar 

  25. C. L. Leonard, W. M. Hollister, and E. V. Bergmann, “Orbital Formationkeeping with Differential Drag,”Journal of Guidance Control and DynamicsVol. 12, No. 1, 1989, pp. 108–113.

    Article  Google Scholar 

  26. F. Lizarralde and J. T. Wen, “Attitude Control Without Angular Velocity Measurement: A Passivity Approach,”IEEE Transactions on Automatic ControlVol 41, No. 3, Mar. 1996, pp. 468–472.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Meyer, “Design and Global Analysis of Spacecraft Attitude Control Systems,”NASA Technical Report R-361Mar. 1971.

    Google Scholar 

  28. Y. NakamuraAdvanced Robotics Redundancy and OptimizationReading, MA: Addison-Wesley, 1991.

    Google Scholar 

  29. D. C. Redding, N. J. Adams, and E. T. Kubiak, “Linear-Quadratic Stationkeeping for the STS Orbiter,”Journal of Guidance Control and DynamicsVol. 12, No. 2, 1989, pp. 248–255.

    Article  Google Scholar 

  30. A. Robertson, T. Corazzini, and J. P. How, “Formation Sensing and Control Technologies for a Separated Spacecraft Interferometer,”Proceedings of the American Control ConferencePhiladelphia, PA, 1998, pp. 1574–1579.

    Google Scholar 

  31. S. Salcudean, “A Globally Convergent Angular Velocity Observer for Rigid Body Motion,”IEEE Transactions on Automatic ControlVol. 36, No. 12, Dec. 1991, pp. 1493–1497.

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Schaub, M. R. Akella, and J. L Junkins, “Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed-Loop Dynamics,”Proceedings of the American Control ConferenceSan Diego, CA, June 1999, pp. 1563–1567.

    Google Scholar 

  33. J. Schilling and R. Spores, “Comparison of Propulsion Options for TechSat 21 Mission,”Air Force Research Laboratory-Formation Flying and Micro-Propulsion WorkshopLancaster, CA, 1998.

    Google Scholar 

  34. M. D. Shuster, “A Survey of Attitude Representations,”J. Astronautical SciencesVol. 41, No. 4, 1993, pp. 439–517.

    MathSciNet  Google Scholar 

  35. J. -J. E. Slotine and W. LiApplied Nonlinear ControlEnglewood Cliffs, NJ: Prentice-Hall, 1991, pp. 122–126.

    MATH  Google Scholar 

  36. M. Spong and M. VidyasagarRobot Dynamics and ControlNew York, NY: John Wiley, 1989.

    Google Scholar 

  37. P. Tsiotras, “Further Passivity Results for the Attitude Control Problem,”IEEE Transactions on Automatic ControlVol. 43, No. 11, Nov. 1998, pp. 1597–1600.

    Article  MathSciNet  MATH  Google Scholar 

  38. P. Tsiotras, H. Shen, and C. Hall, “Satellite Attitude Control and Power Tracking with Energy/Momentum Wheels,”Journal of Guidance Control and DynamicsVol. 24, No. 1, Jan.-Feb. 2001, pp. 23–34.

    Article  Google Scholar 

  39. R. H. Vassar and R. B. Sherwood, “Formationkeeping for a Pair of Satellites in a Circular Orbit,”Journal of Guidance Control and DynamicsVol. 8, No. 2, 1985, pp. 235–242.

    Article  Google Scholar 

  40. P. K. C. Wang and F. Y. Hadaegh, “Coordination and Control of Multiple Microspacecraft Moving in Formation,”Journal of Astronautical SciencesVol. 44, No. 3, 1996, pp. 315–355.

    Google Scholar 

  41. P. K. C. Wang, F. Y. Hadaegh, and K. Lau, “Synchronized Formation Rotation and Attitude Control of Multiple Free-Flying Spacecraft,”Journal of Guidance Control and DynamicsVol. 22, No. 1, 1999, pp. 1582–1589.

    Google Scholar 

  42. J. T. Wen and K. Kreutz-Delgado, “The Attitude Control Problem,”IEEE Transactions on Automatic ControlVol. 36, No. 10Oct.1991, pp. 1148–1156.

    Article  MathSciNet  MATH  Google Scholar 

  43. H. Wong, M. S. de Queiroz, and V. Kapila, “Adaptive Tracking Control Using Synthesized Velocity from Attitude Measurements,”Proceedings of the American Control ConferenceChicago, IL, June 2000, pp. 1572–1576.

    Google Scholar 

  44. J. S. C. Yuan, “Closed-Loop Manipulator Control Using Quaternion Feedback,”IEEE Transactions on Robotics and AutomationVol. 4, No. 4, Aug. 1988, pp. 434–440.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.P. (2003). Aerospace Systems. In: Nonlinear Control of Engineering Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0031-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0031-4_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6581-8

  • Online ISBN: 978-1-4612-0031-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics