Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

In this chapter, several different robotic applications are examined. Given that a myriad of industrial applications require robots to perform repetitious tasks (e.g., assembly, manipulation, inspection), the first robotic control application examined in this chapter the development of learning control methods that exploit the periodic nature of the robot dynamics to improve link position tracking performance. Some of the advantages of a learning-based controller over some other approaches include the ability to compensate for disturbances without high-frequency or high-gain feedback terms and the ability to compensate for time-varying disturbances that can include time-varying parametric effects. In the first section of this chapter, we illustrate how a saturated learning-based estimate can be used to achieve asymptotic tracking in the presence of periodic nonlinear disturbances. Since the learning-based controller estimate is generated from a Lyapunov-based stability analysis, we also illustrate how additional control terms can be integrated to compensate for nonperiodic components of the unknown dynamics Specifically, a hybrid adaptive/learning controller is designed for the robot manipulator dynamics. Experimental results are provided to illustrate that the link position tracking performance of a robot manipulator improves with each repetitive motion due to the mitigating action of the learning estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arimoto“Robustness of Learning Control for Robot Manipulators,” Proceedings of the IEEE International Conference on Robotics and Automation1990.

    Google Scholar 

  2. S. ArimotoControl Theory of Non-Linear Mechanical Systems: A Passivity-Based and Circuit-Theoretic ApproachOxford: Claredon Press, 1996.

    MATH  Google Scholar 

  3. S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering Operation of Robots by Learning,”Journal of Robotic SystemsVol. 1, No. 2, 1984, pp. 123–140.

    Article  Google Scholar 

  4. S. Arimoto, S. Kawamura, and F. Miyazaki, “Realization of Robot Motion Based on a Learning Method,”IEEE Transactions on Systems, Man, and CyberneticsVol. 18, No. 1, 1988, pp. 126–134.

    Article  Google Scholar 

  5. S. Arimoto, T. Naniwa, and Y. H. Liu, “Model-Based Adaptive Hybrid Control for Manipulators with Geometric Endpoint Constraint,”Advanced RoboticsVol. 9, No. 1, 1995, pp. 67–80.

    Article  Google Scholar 

  6. B. E. Bishop and M. W. Spong, “Adaptive Calibration and Control of 2D Monocular Visual Servo System,”IFAC Symposium on Robot ControlNantes, France, 1997, pp. 525–530.

    Google Scholar 

  7. T. Burg, J. Hu, and D. Dawson, “A Redesigned DCAL Controller without Velocity Measurements: Theory and Experimentation,”RoboticaVol. 15, No. 3, May 1997, pp. 337–346.

    Article  Google Scholar 

  8. R. Carelli and R. Kelly, “Adaptive Control of Constrained Robots Modeled by Singular System,”Proceedings of the IEEE Conference on Decision and ControlTampa, FLDec.1989, pp. 2635–2640.

    Google Scholar 

  9. C. C. Cheah, D. Wang, and Y. C. Soh, “Convergence and Robustness of a Discrete-Time Learning Control Scheme for Constrained Manipulators,”Journal of Robotic SystemsVol. 11, No. 3, 1994, pp. 223–238.

    Article  MATH  Google Scholar 

  10. C. C. Cheah, D. Wang, and Y. C. Soh, “Learning Control of Motion and Force for Constrained Robotic Manipulators,”International Journal of Robotics and AutomationVol. 10, No. 3, 1995, pp. 79–88.

    Google Scholar 

  11. C. C. Cheah, D. Wang, and Y. C. Soh, “Learning Control for a Class of Nonlinear Differential-Algebraic Systems with Application to Constrained Robots,”Journal of Robotic SystemsVol. 13, No. 3, 1996, pp. 141–151.

    Article  MATH  Google Scholar 

  12. C. C. Cheah and D. Wang, “A Model-Reference Learning Control Scheme for a Class of Nonlinear Systems,”International Journal of ControlVol. 66, No. 2, 1997, pp. 271–287.

    Article  MathSciNet  MATH  Google Scholar 

  13. S.-I. Cho and I.-J. Ha, “A Learning Approach to Tracking in Mechanical Systems with Friction,”IEEE Transactions on Automatic ControlVol. 45, No. 1, 2000, pp. 111–116.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Colbaugh and K. Glass, “Adaptive Compliant Motion Control of Manipulators without Velocity Measurements,”Proceedings of the IEEE Conference on Robotics and AutomationMinneapolis, MN, Apr. 1996, pp. 2628–2635.

    Google Scholar 

  15. P. Corke and M. Good, “Dynamic Effects in Visual Closed-Loop Systems,”IEEE Transactions on Robotics and AutomationVol. 12, No. 5, 1996, pp. 671–683.

    Article  Google Scholar 

  16. N. Costescu and D. Dawson“QMotor 2.0 - A PC Based Real-Time Multitasking Graphical Control Environment,” Proceedings of the American Control ConferencePhiladelphia, PA, June 1998, pp. 1266–1270.

    Google Scholar 

  17. M. S. de Queiroz, J. Hu, D. Dawson, T. Burg, and S. Donepudi, “Adaptive Position/Force Control of Robot Manipulators without Velocity Measurements: Theory and Experimentation,”IEEE Transactions on Systems Man and CyberneticsVol. 27, No. 5, Oct. 1997, pp. 796–809.

    Article  Google Scholar 

  18. M. S. de Queiroz, D. M. Dawson, S. P. Nagarkatti, and F. ZhangLyapunov-Based Control of Mechanical SystemsBoston, MA: Birkhäuser, 2000.

    Book  Google Scholar 

  19. Direct Drive Manipulator Research and Development Package Opera tions ManualBerkeley, CA: Integrated Motion Inc., 1992.

    Google Scholar 

  20. W. E. Dixon, E. Zergeroglu, D. M. Dawson, and B. T. Costic, “Repetitive Learning Control: A Lyapunov-Based Approach,”IEEE Transactions on Systems, Man, and Cybernetics-Part B: CyberneticsAug. 2002, Vol. 32, No. 4, pp. 538–545.

    Article  Google Scholar 

  21. M. T. Grabbe, J. J. Carroll, D. M. Dawson, and Z. Qu, “Review and Unification of Reduced Order Force Control Methods,”Journal of Robotic SystemsVol. 10, No. 4, June 1993, pp. 481–504.

    Article  MATH  Google Scholar 

  22. G. D. Hager and S. Hutchinson (guest editors), Special Section on Vision-Based Control of Robot Manipulators, IEEE Transactions on Robotics and Automation, Vol. 12, No. 5, Oct. 1996.

    Google Scholar 

  23. G. D. Hager, W. C. Chang, and A. S. Morse, “Robot Hand-Eye Coordination Based on Stereo Vision,”IEEE Control Systems MagazineVol. 15, No. 1, Feb. 1995, pp. 30–39.

    Article  Google Scholar 

  24. C. Ham, Z. Qu, and R. Johnson, “A Nonlinear Learning Control for Robot Manipulators in the Presence of Actuator Dynamics,”International Journal of Robotics and Automation Vol.15, No. 3, June 2000, pp. 119–130.

    Google Scholar 

  25. C. Ham, Z. Qu, and J. Kaloust“Nonlinear Learning Control for a Class of Nonlinear Systems,”Automatica Vol.37, No. 3, 2001, pp. 419–428.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. H. Han, Y. H. Kim, and I.-J. Ha “Iterative Identification of State-Dependent Disturbance Torque for High Precision Velocity Control of Servo Motors,”IEEE Transactions on Automatic Control Vol.43, No. 5, 1998, pp. 724–729.

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Hara, Y. Yamamoto, T. Omata, and M. Nakano, “Control Systems: A New Type Servo System for Periodic Exogenous Signals,”IEEE Transactions on Automatic Control Vol.33, No. 7, 1988, pp. 659–668.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Heinzinger, B. Fenwick, B. Paden, and F. Miyazaki, “Robot Learning Control,”Proceedings of the IEEE Conference on Decision and ControlTampa, FL, Dec. 1989, pp. 436–440.

    Book  Google Scholar 

  29. R. Horowitz “Learning Control of Robot Manipulators,”ASME Journal of Dynamic Systems Measurement and Control Vol.115, 1993, pp. 402–411.

    Article  MATH  Google Scholar 

  30. P. Hsu, J. Hauser, and S. Sastry, “Dynamic Control of Redundant Manipulators,”Journal of Robotic Systems Vol.6, 1989, pp. 133–148.

    Article  MATH  Google Scholar 

  31. J. H. Jean and L. C. Fu, “Efficient Adaptive Hybrid Control Strategies for Robots in Constrained Manipulation,”Proceedings of the IEEE Conference on Robotics and AutomationSacramento, CA, Apr. 1991, pp. 1681–1686.

    Google Scholar 

  32. R. Kelly, “Robust Asymptotically Stable Visual Servoing of Planar Robots,”IEEE Transactions on Robotics and Automation Vol.12, No. 5, Oct. 1996, pp. 759–766.

    Article  Google Scholar 

  33. R. Kelly and A. Marquez, “Fixed-Eye Direct Visual Feedback Control of Planar Robots,”Journal of Systems EngineeringVol.4, No. 5, Nov. 1995, pp. 239–248.

    Google Scholar 

  34. Y.-H. Kim and I.-J. Ha, “A Learning Approach to Precision Speed Control of Servomotors and Its Application to a VCR,”IEEE Transactions on Automatic Control Vol.43, No. 5, 1998, pp. 724–729.

    MathSciNet  MATH  Google Scholar 

  35. Y.-H. Kim and I.-J. Ha “Asymptotic State Tracking in a Class of Nonlinear Systems via Learning-Based Inversion,”IEEE Transactions on Automatic Control Vol.45, No. 11, 2000, pp. 2011–2027.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Kokotovic “The Joy of Feedback: Nonlinear and Adaptive,”IEEE Control Systems Magazine Vol.12, No. 3, June 1992, pp. 7–17.

    Article  Google Scholar 

  37. H. Krishnan and N. H. McClamroch, “Tracking in Nonlinear Differential-Algebraic Control Systems with Applications to Constrained Robot Systems,”Automatica Vol.30, No. 12, 1994, pp. 1885–1897.

    Article  MathSciNet  MATH  Google Scholar 

  38. R. K. Lenz and R. Y. Tsai “Techniques for Calibration of the Scale Factor and Image Center for High Accuracy 3-D Machine Vision Metrology,”IEEE Transactions on Pattern Analysis and Machine Intelligence Vol.10, No. 5, Sept. 1988, pp. 713–720.

    Article  Google Scholar 

  39. F. Lewis, C. Abdallah, and D. DawsonControl of Robot ManipulatorsNew York, NY: MacMillan Publishing Co., 1993.

    Google Scholar 

  40. R. Lozano and B. Brogliato, “Adaptive Control of Robot Manipulators with Flexible Joints,”IEEE Transactions on Automatic ControlVol.37, No. 2, Feb. 1992, pp. 174–181.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Maruyama and M. Fujita, “Robust Visual Servo Control for Planar Manipulators with Eye-In-Hand Configurations,”Proceedings of the Conference on Decision and ControlSan Diego, CA, Dec. 1997, pp. 2551–2552.

    Google Scholar 

  42. N. McClamroch and D. Wang, “Feedback Stabilization and Tracking of Constrained Robots,”IEEE Transactions on Automatic ControlVol. 33, No. 5, May 1988, pp. 419–426.

    Article  MathSciNet  MATH  Google Scholar 

  43. W. Messner, R. Horowitz, W.-W. Kao, and M. Boals, “A New Adaptive Learning Rule,”IEEE Transactions on Automatic ControlVol.36, No. 2, 1991, pp. 188–197.

    Article  MathSciNet  MATH  Google Scholar 

  44. K. L. Moore, “Iterative Learning Control ¡ª An Expository Overview,”Applied and Computational Controls, Signal Processing, and CircuitsVol. 14, 1999, pp. 151–171.

    Article  Google Scholar 

  45. K. L. MooreIterative Learning Control for Deterministic SystemsLondon: Springer-Verlag, 1993.

    Book  MATH  Google Scholar 

  46. B. Nelson and N. Papanikolopoulos (guest editors), Special Issue on Visual Servoing, IEEE Robotics and Automation Magazine, Vol. 5, No. 4, Dec. 1998.

    Article  Google Scholar 

  47. N. Sadegh and R. Horowitz, “Stability and Robustness Analysis of a Class of Adaptive Controllers for Robotic Manipulators,” International Journal of Robotic Research, Vol. 9, No. 9, June 1990, pp. 74–92.

    Article  Google Scholar 

  48. N. Sadegh, R. Horowitz, W. W. Kao, and M. Tomizuka, “A Unified Approach to the Design of Adaptive Controllers for Robot Manipulators,”ASME Journal of Dynamic Systems Measurement and ControlVol. 112, 1990, pp. 618–629.

    Google Scholar 

  49. M. W. Spong and R. Ortega, “On Adaptive Inverse Dynamics Control of Rigid Robots,”IEEE Transactions on Automatic ControlVol.35, No. 1, Jan. 1990, pp. 92–95.

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Spong and M. VidyasagarRobot Dynamics and ControlNew York, NY: John Wiley, 1989.

    Google Scholar 

  51. C. Y. Su, T. P. Leung, and Q. J. Zhou“Adaptive Control of Robot Manipulators under Constrained Motion,” Proceedings of the IEEE Conference on Decision and ControlHonolulu, HI, Dec. 1990, pp. 2650–2655.

    Google Scholar 

  52. C. Y. Su and Y. Stepanenko, “Adaptive Control of Constrained Robots without Using Regressor,”Proceedings of the IEEE Conference on Robotics and AutomationMinneapolis, MN, Apr. 1996, pp. 264–269.

    Google Scholar 

  53. M. Sun and D. Wang “Sampled-Data Iterative Learning Control for Nonlinear Systems with Arbitrary Relative Degree,”Automatica Vol.37, 2001, pp. 283–289.

    Article  MATH  Google Scholar 

  54. M. Tomizuka, T. Tsao, and K. Chew “Discrete-Time Domain Analysis and Synthesis of Controllers,”ASME Journal of Dynamic Systems, Measurement, and Control Vol. 1111989, pp. 353–358.

    Article  MATH  Google Scholar 

  55. M. Tsai, G. Anwar, and M. Tomizuka, “Discrete-Time Control for Robot Manipulators,”Proceedings of the IEEE International Conference on Robotics and Automation1988, pp. 1341–1347.

    Google Scholar 

  56. R. Volpe and P. Khosla, “An Experimental Evaluation and Comparison of Explicit Force Control Strategies for Robotic Manipulators,” Proceedings of the IEEE Conference on Robotics and Automation, Nice, France, May 1992, pp. 1387–1393.

    Google Scholar 

  57. D. Wang, “On D-type and P-type ILC Designs and Anticipatory Approach,”International Journal of ControlVol. 23, No. 10, 2000, pp. 890–901.

    Article  Google Scholar 

  58. D. Wang, Y. C. Soh, and C. C. Cheah, “Robust Motion and Force Control of Constrained Manipulators by Learning,”AutomaticaVol. 31, No. 2, 1995, pp. 257–262.

    Article  MathSciNet  MATH  Google Scholar 

  59. L. Whitcomb, S. Arimoto, and F. Ozaki, “Experiments in Adaptive Model-Based Force Control,”Proceedings of the IEEE Conference on Robotics and AutomationNagoya, Japan, May 1995, pp. 1846–1853.

    Google Scholar 

  60. L. S. Wilfinger, J. T. Wen, and S. H. Murphy, “Integral Force Control with Robustness Enhancement,”IEEE Control Systems MagazineVol. 14, No. 1, Feb. 1994, pp. 31–40.

    Article  Google Scholar 

  61. J.-X. Xu and Z. Qu, “Robust Iterative Learning Control for a Class of Nonlinear Systems,”AutomaticaVol. 34, No. 8, 1998, pp. 983–988.

    Article  MathSciNet  MATH  Google Scholar 

  62. Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real-Time Linux Target: A MATLAB-Based Graphical Control Environment,”Proceedings of the IEEE Conference on Control ApplicationsAnchorage, AK, Sept. 2000, pp. 173–178.

    Google Scholar 

  63. B. Yao and M. Tomizuka, “Adaptive Control of Robot Manipulators in Constrained Motion-Controller Design,”ASME Journal of Dynamic Systems, Measurement, and ControlVol. 117, Sept. 1995, pp. 320–328.

    Article  MATH  Google Scholar 

  64. T. Yoshikawa, “Analysis and Control of Robot Manipulators with Redundancy,” inRobotics Research-The First International SymposiumCambridge, MA: MIT Press, 1984, pp. 735–747.

    Google Scholar 

  65. J. Yuan and Y. Stepanenko, “Robust Control of Robotic Manipulators without Velocity Measurements,”International Journal of Robust and Nonlinear ControlVol. 1, 1991, pp. 203–213.

    Article  MATH  Google Scholar 

  66. E. Zergeroglu, D. M. Dawson, M. de Queiroz, and A. Behal, “Vision-Based Nonlinear Tracking Controllers in the Presence of Parametric Uncertainty,”IEEE/ASME Transactions on MechatronicsVol. 6, No. 3, Sept. 2001, pp. 322–337.

    Article  Google Scholar 

  67. R. R. Y. Zhen and A. A. Goldenberg, “An Adaptive Approach to Constrained Robot Motion Control,”Proceedings of the IEEE Conference on Robotics and AutomationNagoya, Japan, May 1995, pp. 1833–1838.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.P. (2003). Robotic Systems. In: Nonlinear Control of Engineering Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0031-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0031-4_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6581-8

  • Online ISBN: 978-1-4612-0031-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics